On necessary conditions of probability limit theorems in finite algebras
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 47-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the conditions for a finite set with a given system of operations (a finite algebra) to be subject to a probability limit theorem, i.e., arbitrary computations with mutually independent random variables have value distributions that tend to a certain limit (limit law) as the number of random variables used in the computation grows. Such behavior may be seen as a generalization of the central limit theorem that holds for sums of continuous random variables. We show that the existence of a limit probability law in a finite algebra has strong implications for its set of operations. In particular, with some geometric exceptions excluded, the existence of a limit law without zero components implies that all operations in the algebra are quasigroup operations and the limit law is uniform.
Keywords: finite algebra, random variable, limit theorem, uniform distribution.
Mots-clés : quasigroup
@article{DANMA_2020_493_a9,
     author = {A. D. Yashunskii},
     title = {On necessary conditions of probability limit theorems in finite algebras},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {47--50},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_493_a9/}
}
TY  - JOUR
AU  - A. D. Yashunskii
TI  - On necessary conditions of probability limit theorems in finite algebras
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 47
EP  - 50
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_493_a9/
LA  - ru
ID  - DANMA_2020_493_a9
ER  - 
%0 Journal Article
%A A. D. Yashunskii
%T On necessary conditions of probability limit theorems in finite algebras
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 47-50
%V 493
%U http://geodesic.mathdoc.fr/item/DANMA_2020_493_a9/
%G ru
%F DANMA_2020_493_a9
A. D. Yashunskii. On necessary conditions of probability limit theorems in finite algebras. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 47-50. http://geodesic.mathdoc.fr/item/DANMA_2020_493_a9/

[1] Grenander U., Veroyatnosti na algebraicheskikh strukturakh, Nauka, M., 1965, 271 pp.

[2] Vorobev N.N., Matem. sb, 34(76):1 (1954), 89–126 | MR | Zbl

[3] Saloff-Coste L., Probability on discrete structures, Encyc. Math. Sci., 110, ed. H. Kesten, Springer, Berlin, 2004, 263–346 | MR | Zbl

[4] Qian W., Riedel M.D., Zhou H., Bruck J., IEEE Trans. CAD Integrated Circuits and Systems, 30:9 (2011), 1279–1292 | DOI

[5] Lee D.T., Bruck J., IEEE Trans. Comp., 64:12 (2015), 3376–3388 | DOI | MR | Zbl

[6] Wilhelm D., Bruck J., Qian L., Proc. Nat. Acad. Sci. USA, 115:5 (2018), 903–908 | DOI

[7] Markovski S., Quasigroups and Related Systems, 23:1 (2015), 41–90 | MR | Zbl

[8] Markovski S., Gligoroski D., Bakeva V., Proc. Maked. Acad. Sci. and Arts for Math. and Tech. Sci., 20 (1999), 13–28

[9] Yashunskii A.D., Diskret. matem., 25:2 (2013), 149–159 | DOI | MR | Zbl

[10] Yashunskii A.D., Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2019, no. 4, 3–9 | MR | Zbl