On Heyde's theorem on the group $\mathbb{R}\times\mathbb{T}$
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 42-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

According to the well-knows Heyde theorem the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form of independent random variables given the other. We study analogues of this theorem for some locally compact Abelian groups that contain an element of order 2. While coefficients of linear forms are topological automorphisms of a group.
Keywords: Heyde theorem, locally compact Abelian group, topological automorphism.
@article{DANMA_2020_493_a8,
     author = {G. M. Feldman},
     title = {On {Heyde's} theorem on the group $\mathbb{R}\times\mathbb{T}$},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {42--46},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_493_a8/}
}
TY  - JOUR
AU  - G. M. Feldman
TI  - On Heyde's theorem on the group $\mathbb{R}\times\mathbb{T}$
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 42
EP  - 46
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_493_a8/
LA  - ru
ID  - DANMA_2020_493_a8
ER  - 
%0 Journal Article
%A G. M. Feldman
%T On Heyde's theorem on the group $\mathbb{R}\times\mathbb{T}$
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 42-46
%V 493
%U http://geodesic.mathdoc.fr/item/DANMA_2020_493_a8/
%G ru
%F DANMA_2020_493_a8
G. M. Feldman. On Heyde's theorem on the group $\mathbb{R}\times\mathbb{T}$. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 42-46. http://geodesic.mathdoc.fr/item/DANMA_2020_493_a8/

[1] Heyde C.C., Sankhya. Ser. A, 32 (1970), 115–118 | MR | Zbl

[2] Kagan A.M., Linnik Yu.V., Rao S.R., Kharakterizatsionnye zadachi matematicheskoi statistiki, Nauka, M., 1972, 656 pp. | MR

[3] Feldman G.M., J. Theoretical Probab., 17 (2004), 929–941 | DOI | MR | Zbl

[4] Mironyuk M.V., Feldman G.M., Sib. mat. zhurnal, 46 (2005), 403–415 | Zbl

[5] Feldman G.M., Probab. Theory Relat. Fields, 133 (2005), 345–357 | DOI | MR | Zbl

[6] Feldman G.M., Studia Math., 177 (2006), 67–79 | DOI | MR | Zbl

[7] Feldman G.M., J. Funct. Anal., 258 (2010), 3977–3987 | DOI | MR | Zbl

[8] Myronyuk M. V., J. Aust. Math. Soc., 88 (2010), 93–102 | DOI | MR | Zbl

[9] Feldman G.M., Math. Nachr., 286 (2013), 340–348 | DOI | MR | Zbl

[10] Feldman G.M., Publicationes Mathematicae Debrecen, 87 (2015), 147–166 | DOI | MR | Zbl

[11] Feldman G.M., Teor. veroyatn. i ee primeneniya, 62 (2017), 499–517 | DOI

[12] Feldman G.M., J. Fourier Anal. Appl., 26:14 (2020), 1–22 | MR | Zbl

[13] Feldman G.M., Functional equations and characterization problems on locally compact Abelian groups, EMS Tracts in Mathematics, 5, Europ. Math. Soc., Zurich, 2008, 268 pp. | MR | Zbl

[14] Parthasarathy K.R., Probability measures on metric spaces, Academic Press, New York–London, 1967, 276 pp. | MR | Zbl

[15] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975, 656 pp.