Mots-clés : reaction–diffusion–advection equations, fronts
@article{DANMA_2020_493_a5,
author = {N. N. Nefedov and O. V. Rudenko},
title = {On the motion, amplification, and blow-up of fronts in {Burgers-type} equations with quadratic and modular nonlinearity},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {26--31},
year = {2020},
volume = {493},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_493_a5/}
}
TY - JOUR AU - N. N. Nefedov AU - O. V. Rudenko TI - On the motion, amplification, and blow-up of fronts in Burgers-type equations with quadratic and modular nonlinearity JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 26 EP - 31 VL - 493 UR - http://geodesic.mathdoc.fr/item/DANMA_2020_493_a5/ LA - ru ID - DANMA_2020_493_a5 ER -
%0 Journal Article %A N. N. Nefedov %A O. V. Rudenko %T On the motion, amplification, and blow-up of fronts in Burgers-type equations with quadratic and modular nonlinearity %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 26-31 %V 493 %U http://geodesic.mathdoc.fr/item/DANMA_2020_493_a5/ %G ru %F DANMA_2020_493_a5
N. N. Nefedov; O. V. Rudenko. On the motion, amplification, and blow-up of fronts in Burgers-type equations with quadratic and modular nonlinearity. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 26-31. http://geodesic.mathdoc.fr/item/DANMA_2020_493_a5/
[1] Burgers J.M., “A Mathematical Model Illustrating the Theory of Turbulence”, Advances in Applied Mechanics, 1 (1948), 171–199 | DOI | MR
[2] Parker A., “On the Periodic Solution of the Burgers Equation: A Unified Approach”, Proc. R. Soc. Lond. A, 438 (1992), 113–132 | DOI | MR | Zbl
[3] Cole J.D., “On a Quasilinear Parabolic Equation Occurring in Aerodynamics”, Quart. Appl. Math., 9 (1951), 225–236 | DOI | MR | Zbl
[4] Fahmy E.S., Raslan K.R., Abdusalam H.A., “On the Exact and Numerical Solution of the Time-Delayed Burgers Equation”, Int. J. Comput. Math., 85 (2008), 1637–1648 | DOI | MR | Zbl
[5] Rudenko O.V., Gurbatov S.N., Hedberg C.M., Nonlinear Acoustics Through Problems and Examples, Trafford, Victoria, 2011
[6] Volpert A.I., Volpert V.A., Volpert V.A., Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, 140, American Mathematical Society, Providence, Rhode Island, 1994, 448 pp. | DOI | MR | Zbl
[7] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Blow-up in Quasilinear Parabolic Equations, Walter de Gruyter, B., 1995 | MR | Zbl
[8] Rudenko O.V., “Linearizuemoe uravnenie dlya voln v dissipativnykh sredakh s modulnoi, kvadratichnoi i kvadratichno-kubichnoi nelineinostyami”, DAN, 471:1 (2016), 23–27 | MR | Zbl
[9] Rudenko O.V., “Modulnye solitony”, DAN, 471:6 (2016), 451–454
[10] Nefedov N.N., Rudenko O.V., “O dvizhenii fronta v uravnenii tipa Byurgersa s kvadratichnoi i modulnoi nelineinostyu pri nelineinom usilenii”, DAN, 478:3 (2018), 274–279 | Zbl
[11] Ambartsumyan S.A., Raznomodulnaya teoriya uprugosti, Nauka, M., 1982, 318 pp. | MR
[12] Hedberg C.M., Rudenko O.V., “Collisions, Mutual Losses and Annihilation of Pulses in a Modular Nonlinear Medium”, Nonlinear Dyn., 90 (2017), 2083–2091 | DOI | MR
[13] Antipov E.A., Levashova N.T., Nefedov N.N., “Asimptotika dvizheniya fronta v zadache reaktsiya-diffuziya-advektsiya”, ZhVMiMF, 54:10 (2014), 35–49
[14] Nefedov N.N., Recke L., Schnieder K.R., “Existence and Asymptotic Stability of Periodic Solutions with an Interior Layer of Reaction-Advection-Diffusion Equations”, J. Mathematical Analysis and Applications, 405 (2013), 90–103 | DOI | MR | Zbl
[15] Nefedov N., “Comparison Principle for Reaction-Diffusion-Advection Problems with Boundary and Internal Layers”, Lecture Notes in Computer Science, 8236, 2013, 62–72 | DOI | MR | Zbl