On the motion, amplification, and blow-up of fronts in Burgers-type equations with quadratic and modular nonlinearity
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 26-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A singularly perturbed initial-boundary value problem for a parabolic equation, which is called in applications an equation of Burgers type, is considered. Existence conditions are obtained, and an asymptotic approximation of a new class of solutions with a moving front is constructed. The results are applied to problems with quadratic and modular nonlinearity and nonlinear amplification. The influence of nonlinear amplification on the propagation and destruction of fronts is revealed. Estimates for the blow-up localization and blow-up time are obtained.
Keywords: singularly perturbed parabolic problems, equations of Burgers type, internal layers, asymptotic, methods, blow-up of solutions.
Mots-clés : reaction–diffusion–advection equations, fronts
@article{DANMA_2020_493_a5,
     author = {N. N. Nefedov and O. V. Rudenko},
     title = {On the motion, amplification, and blow-up of fronts in {Burgers-type} equations with quadratic and modular nonlinearity},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {26--31},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_493_a5/}
}
TY  - JOUR
AU  - N. N. Nefedov
AU  - O. V. Rudenko
TI  - On the motion, amplification, and blow-up of fronts in Burgers-type equations with quadratic and modular nonlinearity
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 26
EP  - 31
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_493_a5/
LA  - ru
ID  - DANMA_2020_493_a5
ER  - 
%0 Journal Article
%A N. N. Nefedov
%A O. V. Rudenko
%T On the motion, amplification, and blow-up of fronts in Burgers-type equations with quadratic and modular nonlinearity
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 26-31
%V 493
%U http://geodesic.mathdoc.fr/item/DANMA_2020_493_a5/
%G ru
%F DANMA_2020_493_a5
N. N. Nefedov; O. V. Rudenko. On the motion, amplification, and blow-up of fronts in Burgers-type equations with quadratic and modular nonlinearity. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 26-31. http://geodesic.mathdoc.fr/item/DANMA_2020_493_a5/

[1] Burgers J.M., “A Mathematical Model Illustrating the Theory of Turbulence”, Advances in Applied Mechanics, 1 (1948), 171–199 | DOI | MR

[2] Parker A., “On the Periodic Solution of the Burgers Equation: A Unified Approach”, Proc. R. Soc. Lond. A, 438 (1992), 113–132 | DOI | MR | Zbl

[3] Cole J.D., “On a Quasilinear Parabolic Equation Occurring in Aerodynamics”, Quart. Appl. Math., 9 (1951), 225–236 | DOI | MR | Zbl

[4] Fahmy E.S., Raslan K.R., Abdusalam H.A., “On the Exact and Numerical Solution of the Time-Delayed Burgers Equation”, Int. J. Comput. Math., 85 (2008), 1637–1648 | DOI | MR | Zbl

[5] Rudenko O.V., Gurbatov S.N., Hedberg C.M., Nonlinear Acoustics Through Problems and Examples, Trafford, Victoria, 2011

[6] Volpert A.I., Volpert V.A., Volpert V.A., Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, 140, American Mathematical Society, Providence, Rhode Island, 1994, 448 pp. | DOI | MR | Zbl

[7] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Blow-up in Quasilinear Parabolic Equations, Walter de Gruyter, B., 1995 | MR | Zbl

[8] Rudenko O.V., “Linearizuemoe uravnenie dlya voln v dissipativnykh sredakh s modulnoi, kvadratichnoi i kvadratichno-kubichnoi nelineinostyami”, DAN, 471:1 (2016), 23–27 | MR | Zbl

[9] Rudenko O.V., “Modulnye solitony”, DAN, 471:6 (2016), 451–454

[10] Nefedov N.N., Rudenko O.V., “O dvizhenii fronta v uravnenii tipa Byurgersa s kvadratichnoi i modulnoi nelineinostyu pri nelineinom usilenii”, DAN, 478:3 (2018), 274–279 | Zbl

[11] Ambartsumyan S.A., Raznomodulnaya teoriya uprugosti, Nauka, M., 1982, 318 pp. | MR

[12] Hedberg C.M., Rudenko O.V., “Collisions, Mutual Losses and Annihilation of Pulses in a Modular Nonlinear Medium”, Nonlinear Dyn., 90 (2017), 2083–2091 | DOI | MR

[13] Antipov E.A., Levashova N.T., Nefedov N.N., “Asimptotika dvizheniya fronta v zadache reaktsiya-diffuziya-advektsiya”, ZhVMiMF, 54:10 (2014), 35–49

[14] Nefedov N.N., Recke L., Schnieder K.R., “Existence and Asymptotic Stability of Periodic Solutions with an Interior Layer of Reaction-Advection-Diffusion Equations”, J. Mathematical Analysis and Applications, 405 (2013), 90–103 | DOI | MR | Zbl

[15] Nefedov N., “Comparison Principle for Reaction-Diffusion-Advection Problems with Boundary and Internal Layers”, Lecture Notes in Computer Science, 8236, 2013, 62–72 | DOI | MR | Zbl