Geometry of factorization identities for discriminants
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 21-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Delta_n$ be the discriminant of a general polynomial of degree $n$ and $\mathcal{N}$ be the Newton polytope of $\Delta_n$. We give a geometric proof of the fact that the truncations of $\Delta_n$ to faces of $\mathcal{N}$ are equal to products of discriminants of lesser $n$ degrees. The proof is based on the blow-up property of the logarithmic Gauss map for the zero set of $\Delta_n$.
Mots-clés : discriminant, logarithmic Gauss map
Keywords: Newton polytope, Horn–Kapranov parametrization.
@article{DANMA_2020_493_a4,
     author = {E. N. Mikhalkin and V. A. Stepanenko and A. K. Tsikh},
     title = {Geometry of factorization identities for discriminants},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {21--25},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_493_a4/}
}
TY  - JOUR
AU  - E. N. Mikhalkin
AU  - V. A. Stepanenko
AU  - A. K. Tsikh
TI  - Geometry of factorization identities for discriminants
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 21
EP  - 25
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_493_a4/
LA  - ru
ID  - DANMA_2020_493_a4
ER  - 
%0 Journal Article
%A E. N. Mikhalkin
%A V. A. Stepanenko
%A A. K. Tsikh
%T Geometry of factorization identities for discriminants
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 21-25
%V 493
%U http://geodesic.mathdoc.fr/item/DANMA_2020_493_a4/
%G ru
%F DANMA_2020_493_a4
E. N. Mikhalkin; V. A. Stepanenko; A. K. Tsikh. Geometry of factorization identities for discriminants. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 21-25. http://geodesic.mathdoc.fr/item/DANMA_2020_493_a4/

[1] Mumford D., Algebraic Geometry, v. I, Complex Projective Varieties, Springer-Verlag, B.–Heidelberg–N.Y., 1976 | MR | Zbl

[2] Kapranov M.M., “A Characterization of A-Discriminantal Hypersurfaces in Terms of the Logarithmic Gauss Map”, Math. Ann., 290 (1991), 277–285 | DOI | MR | Zbl

[3] Passare M., Tsikh A., “Algebraic Equations and Hypergeometric Series”, The legacy of Niels Henrik Abel, Springer, 2004, 653–672 | DOI | MR | Zbl

[4] Sadykov T.M., Tsikh A.K., Gipergeometricheskie i algebraicheskie funktsii mnogikh peremennykh, Nauka, M., 2014, 408 pp.

[5] Gelfand I., Kapranov M., Zelevinsky A., Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl

[6] Vasilev V.A., Topologiya dopolnenii k diskriminantam, FAZIS, M., 1997, 538 pp. | MR

[7] Mikhalkin E.N., Tsikh A.K., “Singulyarnye straty kaspidalnogo tipa dlya klassicheskogo diskriminanta”, Matem. sb., 206:2 (2015), 119–148 | DOI | MR | Zbl

[8] Antipova I.A., Mikhalkin E.N., Tsikh A.K., “Ratsionalnye vyrazheniya dlya kratnykh kornei algebraicheskikh uravnenii”, Matem. sb., 209:10 (2018), 3–30 | DOI | MR | Zbl

[9] Esterov A.I., “Galois Theory for General Systems of Polynomial Equations”, Compositio Mathematica, 155:2 (2019), 229–245 | DOI | MR | Zbl

[10] Vasilev V.A., “Stabilnye kogomologii prostranstv nerezultantnykh sistem mnogochlenov v ${{\mathbb{R}}^{n}}$”, DAN, 481:3 (2018), 238–242 | Zbl

[11] Dickenstein A., Feichtner E., Sturmfels E., “Tropical Discriminants”, J. AMS, 20:4, 1111–1133 | MR | Zbl

[12] Mikhalkin E.N., Tsikh A.K., “On the Structure of the Classical Discriminant”, Zhurn. SFU. Ser. Matem. i fiz., 8:4 (2015), 425–435 | MR

[13] Batyrev V., Winter School lectures in Arizona, , 2004 http://swc.math.arizona.edu/oldaws/04Notes.html