Contact geometry in optimal control of thermodynamic processes for gases
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 99-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We solve an optimal control problem for thermodynamic processes in an ideal gas. The thermodynamic state is given by a Legendrian manifold in a contact space. Pontryagin’s maximum principle is used to find an optimal trajectory (thermodynamic process) on this manifold that maximizes the work of the gas. In the case of ideal gases, it is shown that the corresponding Hamiltonian system is completely integrable and its quadrature-based solution is given.
Keywords: contact geometry, thermodynamics, optimal control, Hamiltonian systems, integrability.
@article{DANMA_2020_493_a19,
     author = {A. G. Kushner and V. V. Lychagin and M. Roop},
     title = {Contact geometry in optimal control of thermodynamic processes for gases},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {99--103},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_493_a19/}
}
TY  - JOUR
AU  - A. G. Kushner
AU  - V. V. Lychagin
AU  - M. Roop
TI  - Contact geometry in optimal control of thermodynamic processes for gases
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 99
EP  - 103
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_493_a19/
LA  - ru
ID  - DANMA_2020_493_a19
ER  - 
%0 Journal Article
%A A. G. Kushner
%A V. V. Lychagin
%A M. Roop
%T Contact geometry in optimal control of thermodynamic processes for gases
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 99-103
%V 493
%U http://geodesic.mathdoc.fr/item/DANMA_2020_493_a19/
%G ru
%F DANMA_2020_493_a19
A. G. Kushner; V. V. Lychagin; M. Roop. Contact geometry in optimal control of thermodynamic processes for gases. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 99-103. http://geodesic.mathdoc.fr/item/DANMA_2020_493_a19/

[1] Rozonoer L.I., Tsirlin A.M., “Optimalnoe upravlenie termodinamicheskimi protsessami”, AiT, 1983, no. 1, 70–79 ; No 2, 88–101 ; No 3, 50–64 | Zbl | Zbl

[2] Gibbs J.W., “A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces”, Transactions of the Connecticut Academy, 1873, 382–404 | MR

[3] Mrugala R., “Geometrical formulation of equilibrium phenomenological thermodynamics”, Reports on Mathematical Physics, 14 (1978), 419–427 | DOI

[4] Ruppeiner G., “Riemannian Geometry in Thermodynamic Fluctuation Theory”, Reviews of Modern Physics, 67:3 (1995), 605–659 | DOI | MR

[5] Lychagin V., “Contact Geometry, Measurement and Thermodynamics”, Nonlinear PDEs, their geometry and applications, Birkhauser, Cham, 2019 | MR

[6] Bocharov A.V., Verbovetskii A.M. i dr., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, eds. A.M. Vinogradova, I.S. Krasilschika, Faktorial press, M., 2005

[7] Kushner A., Lychagin V., Rubtsov V., Contact Geometry and Non-linear Differential Equations, Cambridge University Press, Cambridge, 2007 | MR

[8] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, URSS, M., 2003 | MR