Problem of safely tracking an object avoiding observation in $\mathbb{R}^2$
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 86-89
Cet article a éte moissonné depuis la source Math-Net.Ru
For the problem of an autonomous object moving under hostile observation, the observer’s positions are characterized in which the object following any route can choose a speed mode that allows observation evasion, and positions guaranteeing that the observer is able to track the object on the initial part of the trajectory and only on it are described.
Mots-clés :
navigation, observer.
Keywords: autonomous vehicle, trajectory
Keywords: autonomous vehicle, trajectory
@article{DANMA_2020_493_a16,
author = {V. I. Berdyshev},
title = {Problem of safely tracking an object avoiding observation in $\mathbb{R}^2$},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {86--89},
year = {2020},
volume = {493},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_493_a16/}
}
TY - JOUR
AU - V. I. Berdyshev
TI - Problem of safely tracking an object avoiding observation in $\mathbb{R}^2$
JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY - 2020
SP - 86
EP - 89
VL - 493
UR - http://geodesic.mathdoc.fr/item/DANMA_2020_493_a16/
LA - ru
ID - DANMA_2020_493_a16
ER -
%0 Journal Article
%A V. I. Berdyshev
%T Problem of safely tracking an object avoiding observation in $\mathbb{R}^2$
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 86-89
%V 493
%U http://geodesic.mathdoc.fr/item/DANMA_2020_493_a16/
%G ru
%F DANMA_2020_493_a16
V. I. Berdyshev. Problem of safely tracking an object avoiding observation in $\mathbb{R}^2$. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 86-89. http://geodesic.mathdoc.fr/item/DANMA_2020_493_a16/
[1] Berdyshev V.I., “Kharakterizatsiya optimalnykh traektorii v ${{\mathbb{R}}^{3}}$”, DAN, 464:4 (2015), 411–413 | Zbl
[2] Berdyshev V.I., Kostousov V.B., Popov A.A., “Traektoriya, minimiziruyuschaya obluchenie dvizhuschegosya ob'ekta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24, no. 1, 2018, 41–52
[3] Lyu V., “Metody planirovaniya puti v srede s prepyatstviyami (obzor)”, Matematika i mat. modelirovanie, 2018, no. 1, 15–58