Young duality and aggregation of balances
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 81-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An operation generalizing convolution is introduced using the Young transform and Fenchel’s duality theorem. Based on this operation, an aggregation procedure for a nonlinear input–output model with concave positively homogeneous production functions is proposed.
Keywords: nonlinear input–output model, Young transform, problem of weak separability, Cobb–Douglas production function.
@article{DANMA_2020_493_a15,
     author = {A. A. Shananin},
     title = {Young duality and aggregation of balances},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {81--85},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_493_a15/}
}
TY  - JOUR
AU  - A. A. Shananin
TI  - Young duality and aggregation of balances
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 81
EP  - 85
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_493_a15/
LA  - ru
ID  - DANMA_2020_493_a15
ER  - 
%0 Journal Article
%A A. A. Shananin
%T Young duality and aggregation of balances
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 81-85
%V 493
%U http://geodesic.mathdoc.fr/item/DANMA_2020_493_a15/
%G ru
%F DANMA_2020_493_a15
A. A. Shananin. Young duality and aggregation of balances. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 81-85. http://geodesic.mathdoc.fr/item/DANMA_2020_493_a15/

[1] Acemoglu D., Ozdaglar A., Tahbaz-Salehi A., “The Network Origins of Aggregate Fluctuations”, Econometrica, 80:5 (2012), 1977–2016 | DOI | MR | Zbl

[2] Agaltsov A.D., Molchanov E.G., Shananin A.A., “Inverse Problems in Models of Resource Distribution”, J. Geometric Analysis, 28:1 (2018), 726–765 | DOI | MR | Zbl