New statistical kernel-projection estimator in the Monte Carlo method
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 62-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The statistical kernel estimator in the Monte Carlo method is usually optimized based on the preliminary construction of a “microgrouped” sample of values of the variable under study. Even for the two-dimensional case, such optimization is very difficult. Accordingly, we propose a combined (kernel-projection) statistical estimator of the two-dimensional distribution density: a kernel estimator is constructed for the first (main) variable, and a projection estimator, for the second variable. In this case, for each kernel interval determined by the microgrouped sample, the coefficients of a particular orthogonal decomposition of the conditional probability density are statistically estimated based on preliminary results for the “micro intervals”. An important result of this work is the mean-square optimization of such an estimator under assumptions made about the convergence rate of the orthogonal decomposition in use. The constructed estimator is verified by evaluating the bidirectional distribution of a radiation flux passing through a layer of scattering and absorbing substance.
Keywords: kernel density estimator, projection estimator, kernel-projection estimator, Monte Carlo method.
@article{DANMA_2020_493_a12,
     author = {G. A. Mikhailov and N. V. Tracheva and S. A. Uhinov},
     title = {New statistical kernel-projection estimator in the {Monte} {Carlo} method},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {62--67},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_493_a12/}
}
TY  - JOUR
AU  - G. A. Mikhailov
AU  - N. V. Tracheva
AU  - S. A. Uhinov
TI  - New statistical kernel-projection estimator in the Monte Carlo method
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 62
EP  - 67
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_493_a12/
LA  - ru
ID  - DANMA_2020_493_a12
ER  - 
%0 Journal Article
%A G. A. Mikhailov
%A N. V. Tracheva
%A S. A. Uhinov
%T New statistical kernel-projection estimator in the Monte Carlo method
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 62-67
%V 493
%U http://geodesic.mathdoc.fr/item/DANMA_2020_493_a12/
%G ru
%F DANMA_2020_493_a12
G. A. Mikhailov; N. V. Tracheva; S. A. Uhinov. New statistical kernel-projection estimator in the Monte Carlo method. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 62-67. http://geodesic.mathdoc.fr/item/DANMA_2020_493_a12/

[1] Epanechnikov V.A., “Neparametricheskaya otsenka mnogomernoi plotnosti veroyatnosti”, Teoriya veroyatnostei i ee primeneniya, 14:1 (1969), 156–161 | MR

[2] Borovkov A.A., Matematicheskaya statistika, Nauka, Novosibirsk, 1997, 771 pp.

[3] Mikhailov G.A., Prigarin M., Rozhenko S.A., “Modifikatsii standartnoi vektornoi otsenki metoda Monte-Karlo dlya issledovaniya kharakteristik rasseyannogo polyarizovannogo izlucheniya”, DAN, 476:3 (2017), 264–286

[4] Lotova G.Z., “Monte Carlo Algorithms for Calculation of Diffusive Characteristics of an Electron Avalanche in Gases”, Russian J. Mathematical and Mathematical Modelling, 31:6 (2016), 369–377 | MR | Zbl

[5] Chentsov N.N., Statisticheskie reshayuschie pravila i optimalnye vyvody, Nauka, M., 1972, 520 pp.

[6] Smelov V.V., Zadachi Shturma-Liuvillya i razlozheniya funktsii v bystroskhodyaschiesya ryady, Izd-vo SO RAN, Novosibirsk, 2000, 144 pp.

[7] Mikhailov G.A., Tracheva N.V., Ukhinov S.A., “Randomizirovannyi proektsionnyi metod dlya otsenki uglovykh raspredelenii polyarizovannogo izlucheniya na osnove chislennogo statisticheskogo modelirovaniya”, ZhVMi MF, 56:9 (2016), 1560–1570 | Zbl

[8] Tracheva N.V., Ukhinov S.A., “On the evaluation of spatial-angular distributions of polarization characteristics of scattered radiation”, Statistical Papers, 59:4 (2018), 1541–1557 | DOI | MR | Zbl

[9] Marchuk G.I., Mikhailov G.A., Nazaraliev M.A., Darbinyan R.A., Kargin B.S., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976, 284 pp. | MR

[10] Sibirskii superkompyuternyi tsentr IVMiMG SO RAN, (data obrascheniya 03.03.2020) http://www.sscc.icmmg.nsc.ru/