Stationary spherically symmetric solutions of the Vlasov–Poisson system in the three-dimensional case
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 5-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the three-dimensional stationary Vlasov–Poisson system of equations with respect to the distribution function of the gravitating matter $f=f_q(r,u)$, the local density $\rho=\rho(r)$, and the Newtonian potential $U=U(r)$, where $r:=|x|$, $u:=|v|$ ($(x,v)\in\mathbb R^3\times\mathbb R^3$ are the space–velocity coordinates), and $f$ is a function $q$ of the local energy $E:=U(r)+\dfrac{u^2}2$. For a given function $p=p(r)$, we obtain sufficient conditions for $p$ to be “extendable”. This means that there exists a stationary spherically symmetric solution $(f_q,\rho,U)$ of the Vlasov–Poisson system depending on the local energy $E$ such that $\rho=p$.
Mots-clés : Vlasov–Poisson system
Keywords: stationary spherically symmetric solution, stellar dynamics.
@article{DANMA_2020_493_a0,
     author = {J. Batt and E. J\"orn and A. L. Skubachevskii},
     title = {Stationary spherically symmetric solutions of the {Vlasov{\textendash}Poisson} system in the three-dimensional case},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {5--8},
     year = {2020},
     volume = {493},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_493_a0/}
}
TY  - JOUR
AU  - J. Batt
AU  - E. Jörn
AU  - A. L. Skubachevskii
TI  - Stationary spherically symmetric solutions of the Vlasov–Poisson system in the three-dimensional case
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 5
EP  - 8
VL  - 493
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_493_a0/
LA  - ru
ID  - DANMA_2020_493_a0
ER  - 
%0 Journal Article
%A J. Batt
%A E. Jörn
%A A. L. Skubachevskii
%T Stationary spherically symmetric solutions of the Vlasov–Poisson system in the three-dimensional case
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 5-8
%V 493
%U http://geodesic.mathdoc.fr/item/DANMA_2020_493_a0/
%G ru
%F DANMA_2020_493_a0
J. Batt; E. Jörn; A. L. Skubachevskii. Stationary spherically symmetric solutions of the Vlasov–Poisson system in the three-dimensional case. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 493 (2020), pp. 5-8. http://geodesic.mathdoc.fr/item/DANMA_2020_493_a0/

[1] Batt J., Jörn E., Li Y., “Stationary Solutions of the Flat Vlasov-Poisson System”, Arch. Rational Mech. Anal., 231 (2019), 189–232 | DOI | MR | Zbl

[2] Batt J., Faltenbacher W., Horst E., “Stationary Spherically Symmetric Models in Stellar Dynamics”, Arch. Rational Mech. Anal., 93 (1986), 159–183 | DOI | MR | Zbl

[3] Binney J., Tremaine S., Galactic Dynamics, Princeton University Press, Princeton, 1987 | Zbl

[4] Gilbarg D., Trudinger N.S., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR

[5] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye ellipticheskie uravneniya, Nauka, M., 1964 | MR

[6] Tonelli L., “Su un Problema di Abel”, Mathematische Annal, 99 (1928), 183–199 | DOI | MR