Accuracy of MUSCL-type schemes in shock wave calculations
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 43-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The central-difference Nessyahu–Tadmor (NT) scheme is considered, which is built using second-order MUSCL reconstruction of fluxes. The accuracy of the NT scheme is studied as applied to calculating shock waves propagating with a variable velocity. It is shown that this scheme has the first order of integral convergence on intervals with one of the boundaries lying in the region of influence of the shock wave. As a result, the local accuracy of the NT scheme is significantly reduced in these areas. Test calculations are presented that demonstrate these properties of the NT scheme.
Keywords: NT scheme, MUSCL flux reconstruction, shock wave, accuracy of finite-difference scheme.
@article{DANMA_2020_492_a8,
     author = {O. A. Kovyrkina and V. V. Ostapenko},
     title = {Accuracy of {MUSCL-type} schemes in shock wave calculations},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {43--48},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a8/}
}
TY  - JOUR
AU  - O. A. Kovyrkina
AU  - V. V. Ostapenko
TI  - Accuracy of MUSCL-type schemes in shock wave calculations
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 43
EP  - 48
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a8/
LA  - ru
ID  - DANMA_2020_492_a8
ER  - 
%0 Journal Article
%A O. A. Kovyrkina
%A V. V. Ostapenko
%T Accuracy of MUSCL-type schemes in shock wave calculations
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 43-48
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a8/
%G ru
%F DANMA_2020_492_a8
O. A. Kovyrkina; V. V. Ostapenko. Accuracy of MUSCL-type schemes in shock wave calculations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 43-48. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a8/

[1] Godunov S.K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Mat. sb., 47:3 (1959), 271–306 | Zbl

[2] Van Leer B., “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | Zbl

[3] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[4] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Analys., 24:2 (1987), 279–309 | DOI | MR | Zbl

[5] Jiang G.S., Shu C.W., “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126 (1996), 202–228 | DOI | MR | Zbl

[6] Cockburn B., “An introduction to the discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equations”, Lect. Notes Math., 1697, 1998, 151–268 | DOI | MR | Zbl

[7] Karabasov S.A., Goloviznin V.M., “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comput. Phys., 228 (2009), 7426–7451 | DOI | MR | Zbl

[8] Kovyrkina O.A., Ostapenko V.V., “O skhodimosti raznostnykh skhem skvoznogo scheta”, DAN, 433:5 (2010), 599–603 | DOI | MR | Zbl

[9] Mikhailov N.A., “O poryadke skhodimosti raznostnykh skhem WENO za frontom udarnoi volny”, Matem. modelir., 27:2 (2015), 129–138 | DOI | MR | Zbl

[10] Ladonkina M.E., Neklyudova O.A.,Ostapenko V.V., Tishkin V.F., “O tochnosti razryvnogo metoda Galerkina pri raschete udarnykh voln”, ZhVMiMF, 58:8 (2018), 148–156 | DOI | MR

[11] Kovyrkina O.A., Ostapenko V.V., “O monotonnosti i tochnosti skhemy KABARE pri raschete obobschennykh reshenii s udarnymi volnami”, Vych. tekhnologii, 23:2 (2018), 37–54 | MR

[12] Nessyahu H., Tadmor E., “Non-oscillatory central differencing for hyperbolic conservation laws”, J. Comput. Phys., 87:2 (1990), 408–463 | DOI | MR | Zbl

[13] Kurganov A., Tadmor E., “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl

[14] Zyuzina N.A., Kovyrkina O.A., Ostapenko V.V., “Monotonnaya raznostnaya skhema, sokhranyayuschaya povyshennuyu tochnost v oblastyakh vliyaniya udarnykh voln”, DAN, 482:6 (2018), 639–643 | DOI | MR | Zbl