Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2020_492_a8, author = {O. A. Kovyrkina and V. V. Ostapenko}, title = {Accuracy of {MUSCL-type} schemes in shock wave calculations}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {43--48}, publisher = {mathdoc}, volume = {492}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a8/} }
TY - JOUR AU - O. A. Kovyrkina AU - V. V. Ostapenko TI - Accuracy of MUSCL-type schemes in shock wave calculations JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 43 EP - 48 VL - 492 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a8/ LA - ru ID - DANMA_2020_492_a8 ER -
%0 Journal Article %A O. A. Kovyrkina %A V. V. Ostapenko %T Accuracy of MUSCL-type schemes in shock wave calculations %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 43-48 %V 492 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a8/ %G ru %F DANMA_2020_492_a8
O. A. Kovyrkina; V. V. Ostapenko. Accuracy of MUSCL-type schemes in shock wave calculations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 43-48. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a8/
[1] Godunov S.K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Mat. sb., 47:3 (1959), 271–306 | Zbl
[2] Van Leer B., “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | Zbl
[3] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[4] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Analys., 24:2 (1987), 279–309 | DOI | MR | Zbl
[5] Jiang G.S., Shu C.W., “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126 (1996), 202–228 | DOI | MR | Zbl
[6] Cockburn B., “An introduction to the discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equations”, Lect. Notes Math., 1697, 1998, 151–268 | DOI | MR | Zbl
[7] Karabasov S.A., Goloviznin V.M., “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comput. Phys., 228 (2009), 7426–7451 | DOI | MR | Zbl
[8] Kovyrkina O.A., Ostapenko V.V., “O skhodimosti raznostnykh skhem skvoznogo scheta”, DAN, 433:5 (2010), 599–603 | DOI | MR | Zbl
[9] Mikhailov N.A., “O poryadke skhodimosti raznostnykh skhem WENO za frontom udarnoi volny”, Matem. modelir., 27:2 (2015), 129–138 | DOI | MR | Zbl
[10] Ladonkina M.E., Neklyudova O.A.,Ostapenko V.V., Tishkin V.F., “O tochnosti razryvnogo metoda Galerkina pri raschete udarnykh voln”, ZhVMiMF, 58:8 (2018), 148–156 | DOI | MR
[11] Kovyrkina O.A., Ostapenko V.V., “O monotonnosti i tochnosti skhemy KABARE pri raschete obobschennykh reshenii s udarnymi volnami”, Vych. tekhnologii, 23:2 (2018), 37–54 | MR
[12] Nessyahu H., Tadmor E., “Non-oscillatory central differencing for hyperbolic conservation laws”, J. Comput. Phys., 87:2 (1990), 408–463 | DOI | MR | Zbl
[13] Kurganov A., Tadmor E., “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl
[14] Zyuzina N.A., Kovyrkina O.A., Ostapenko V.V., “Monotonnaya raznostnaya skhema, sokhranyayuschaya povyshennuyu tochnost v oblastyakh vliyaniya udarnykh voln”, DAN, 482:6 (2018), 639–643 | DOI | MR | Zbl