On stationary nonequilibrium measures for wave equations
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 27-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the Cauchy problem for wave equations with constant and variable coefficients is considered. We assume that the initial data are a random function with finite mean energy density and study the convergence of distributions of the solutions to a limiting Gaussian measure for large times. We derive the formulas for the limiting energy current density (in mean) and find a new class of stationary nonequilibrium states for the studied model.
Keywords: wave equations, random initial data, mixing condition, weak convergence of measures, Gaussian and Gibbs measures, energy current density, nonequilibrium states.
@article{DANMA_2020_492_a5,
     author = {T. V. Dudnikova},
     title = {On stationary nonequilibrium measures for wave equations},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {27--30},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a5/}
}
TY  - JOUR
AU  - T. V. Dudnikova
TI  - On stationary nonequilibrium measures for wave equations
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 27
EP  - 30
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a5/
LA  - ru
ID  - DANMA_2020_492_a5
ER  - 
%0 Journal Article
%A T. V. Dudnikova
%T On stationary nonequilibrium measures for wave equations
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 27-30
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a5/
%G ru
%F DANMA_2020_492_a5
T. V. Dudnikova. On stationary nonequilibrium measures for wave equations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 27-30. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a5/

[1] Vainberg B.R., Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, Izd-vo Moskovskogo un-ta, M., 1982, 296 pp. | MR

[2] Bonetto F., Lebowitz J.L., Rey-Bellet L., Mathematical Physics, eds. A. Fokas, A. Grigoryan, T. Kibble, B. Zegarlinski, Imperial College Press, 2000, 128–150 | MR | Zbl

[3] Lepri S., Livi R., Politi A., Physics Reports, 377 (2003), 1–80 | DOI | MR

[4] Boldrighini C., Pellegrinotti A., Triolo L., J. Stat. Phys., 30 (1983), 123–155 | DOI | MR

[5] Dudnikova T.V., Rus. J. Math. Phys., 26:4 (2019), 429–453 | MR

[6] Dudnikova T.V., DAN, 487:3 (2019), 7–9 | MR

[7] Dudnikova T.V., Komech A.I., Spohn H., Markov Processes and Related Fields, 8:1 (2002), 43–80 | MR | Zbl

[8] Dudnikova T.V., Prepr. IPM im. M.V. Keldysha, 2005, 80, 14 pp.