Periodic time-optimal controls on two-step free-nilpotent Lie groups
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 108-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

For two-step free nilpotent Lie algebras, we describe symplectic foliations and Casimir functions. A left-invariant time-optimal problem is considered in which the set of admissible controls is given by a strictly convex compact set in the first layer of the Lie algebra that contains the origin in its interior. We describe integrals for the vertical subsystem of the Hamiltonian system of the Pontryagin maximum principle. The properties of solutions to this system for low ranks of the Poisson bivector are described.
Keywords: symplectic foliations, Casimir functions, time-optimal control problem, Pontryagin maximum principle, periodic controls.
@article{DANMA_2020_492_a23,
     author = {Yu. L. Sachkov},
     title = {Periodic time-optimal controls on two-step free-nilpotent {Lie} groups},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {108--111},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a23/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
TI  - Periodic time-optimal controls on two-step free-nilpotent Lie groups
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 108
EP  - 111
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a23/
LA  - ru
ID  - DANMA_2020_492_a23
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%T Periodic time-optimal controls on two-step free-nilpotent Lie groups
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 108-111
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a23/
%G ru
%F DANMA_2020_492_a23
Yu. L. Sachkov. Periodic time-optimal controls on two-step free-nilpotent Lie groups. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 108-111. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a23/

[1] Montgomery R., A Tour of Subriemannian Geometries, Their Geodesics and Applications, AMS, 2002 | MR | Zbl

[2] Agrachev A.A., Sachkov Yu.L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005

[3] Agrachev A., Barilari D., Boscain U., A comprehensive introduction to sub-Riemannian geometry, Cambridge University Press, Cambridge, 2019 | MR

[4] Berestovskii V.N., “Odnorodnye mnogoobraziya s vnutrennei metrikoi II”, Sib. matem. zhurn., 30:2 (1989), 14–28 | MR | Zbl

[5] Berestovskii V. N., “Geodezicheskie negolonomnykh levoinvariantnykh vnutrennikh metrik na gruppe Geizenberga i izoperimetriksy ploskosti Minkovskogo”, Sib. matem. zhurn., 35:1 (1994), 3–11 | Zbl

[6] Barilari D., Boscain U., Le Donne E., and Sigalotti M., “Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions”, J. Dyn. Control Syst., 23:3 (2017), 547–575 | DOI | MR | Zbl

[7] Ardentov A., Le Donne E., Sachkov Yu., “Sub-Finsler geodesics on Cartan group”, Regular and Chaotic Dynamics, 24:1 (2019), 36–60 | DOI | MR | Zbl

[8] Brockett R., “Nonlinear Control and Differential Geometry”, Proc. Intern. Congress of Mathematicians (August 16-24, 1983, Warszawa), 1357–1368 | MR | Zbl

[9] Myasnichenko O., “Nilpotent (3, 6) sub-Riemannian problem”, J. Dyn. Control Syst., 8:4 (2002), 573–597 | DOI | MR | Zbl

[10] Rizzi L., Serres U., “On the cut locus of free, step two Carnot groups”, Proc. Amer. Math. Soc., 145 (2017), 5341–5357 | DOI | MR | Zbl

[11] Le Donne E., Speight G., “Lusin approximation for horizontal curves in step 2 Carnot groups”, G. Calc. Var., 55 (2016), 111 | DOI | MR | Zbl

[12] Busemann H., “The isoperimetric problem in the Minkowski plane”, AJM, 69 (1947), 863–871 | MR | Zbl

[13] Kirillov A.A., Lectures on the Orbit Method, AMS, 2004 | MR | Zbl

[14] Rockafellar R.T., Convex Analysis, Princeton University Press, 1970 | MR | Zbl