On the existence of a global solution of a hyperbolic problem
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 97-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

A quasilinear system of hyperbolic equations describing plane one-dimensional relativistic oscillations of electrons in a cold plasma is considered. For a simplified formulation, a criterion for the existence of a global-in-time smooth solution is obtained. For the original system, a sufficient condition for singularity formation is found, and a sufficient condition for the smoothness of the solution within the nonrelativistic period of oscillations is established. In addition, it is shown that arbitrarily small perturbations of the trivial solution lead to the formation of singularities in a finite time. The results can be used to construct and substantiate numerical algorithms for modeling the breaking of plasma oscillations.
Keywords: quasilinear hyperbolic equations, plasma oscillations, loss of smoothness, breaking effect.
@article{DANMA_2020_492_a20,
     author = {O. S. Rozanova and E. V. Chizhonkov},
     title = {On the existence of a global solution of a hyperbolic problem},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {97--100},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a20/}
}
TY  - JOUR
AU  - O. S. Rozanova
AU  - E. V. Chizhonkov
TI  - On the existence of a global solution of a hyperbolic problem
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 97
EP  - 100
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a20/
LA  - ru
ID  - DANMA_2020_492_a20
ER  - 
%0 Journal Article
%A O. S. Rozanova
%A E. V. Chizhonkov
%T On the existence of a global solution of a hyperbolic problem
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 97-100
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a20/
%G ru
%F DANMA_2020_492_a20
O. S. Rozanova; E. V. Chizhonkov. On the existence of a global solution of a hyperbolic problem. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 97-100. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a20/

[1] Birdsall C.K., Langdon A.B., Plasma physics via computer simulation, McGraw-Hill Inc., N.Y., 1985, 504 pp.

[2] Dnestrovskii Yu.N., Kostomarov D.P., Matematicheskoe modelirovanie plazmy, Nauka, M., 1982, 320 pp.

[3] Dawson J.M., “Nonlinear electron oscillations in a cold plasma”, Phys. Review, 113:2 (1959), 383–387 | DOI | MR | Zbl

[4] Zeldovich Ya.B., Myshkis A.D., Elementy matematicheskoi fiziki, Nauka, M., 1973, 351 pp. | MR

[5] Kulikovskii A.G., Pogorelov N.V., Semenov A.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, 2-e izd., Fizmatlit, M., 2012, 656 pp.

[6] Chizhonkov E.V., Matematicheskie aspekty modelirovaniya kolebanii i kilvaternykh voln v plazme, Fizmatlit, M., 2018, 256 pp.

[7] Davidson R.C., Methods in nonlinear plasma theory, Academic Press, N.Y., 1972, 376 pp.

[8] Dafermos C.M., Hyperbolic Conservation Laws in Continuum Physics, The 4th Ed., Springer, B.–Heidelberg, 2016, 852 pp. | MR | Zbl

[9] Akhiezer A.I., Polovin R.V., “K teorii volnovykh dvizhenii elektronnoi plazmy”, ZhETF, 30:5 (1956), 915–928 | Zbl