Problem of acoustic diagnostics of a damaged zone
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 92-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of seismic wave propagation from a source located in a well is considered. Acoustic equations are used to describe the dynamic behavior of the fluid. The damaged zone is described as a porous fluid-saturated medium by applying the Dorovsky model. The elastic approximation is used to describe the dynamic behavior of the surrounding rock. A unified algorithm based on the grid-characteristic approach with curvilinear grids is proposed for full-wave modeling in the entire computational domain. Its distinctive feature is that the necessary contact conditions on the boundary between media with different rheological properties are stated explicitly. The possibility of acoustic diagnostics of the heterogeneity of the damaged zone is numerically explored.
Keywords: mathematical modeling, grid-characteristic method, seismic survey process, porous media, Dorovsky model, damaged zone, fractured medium.
@article{DANMA_2020_492_a19,
     author = {I. B. Petrov and V. I. Golubev and A. V. Shevchenko},
     title = {Problem of acoustic diagnostics of a damaged zone},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {92--96},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a19/}
}
TY  - JOUR
AU  - I. B. Petrov
AU  - V. I. Golubev
AU  - A. V. Shevchenko
TI  - Problem of acoustic diagnostics of a damaged zone
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 92
EP  - 96
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a19/
LA  - ru
ID  - DANMA_2020_492_a19
ER  - 
%0 Journal Article
%A I. B. Petrov
%A V. I. Golubev
%A A. V. Shevchenko
%T Problem of acoustic diagnostics of a damaged zone
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 92-96
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a19/
%G ru
%F DANMA_2020_492_a19
I. B. Petrov; V. I. Golubev; A. V. Shevchenko. Problem of acoustic diagnostics of a damaged zone. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 92-96. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a19/

[1] Virieux J., Calandra H., Plessix R.E., “A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging”, Geophysical Prospecting, 59:5 (2011), 794–813 | DOI

[2] Carcione J. M., Herman C.G., Kroode P. E., “Y2K Review Article: Seismic Modeling”, Rev. Lit. Arts Amer., 67:4 (2002), 1304–1325

[3] Breus A., Favorskaya A., Golubev V., Kozhemyachenko A., Petrov I., “Investigation of Seismic Stability of High-Rising Buildings Using Grid-Characteristic Method”, Procedia Computer Science, 154 (2019), 305–310 | DOI

[4] Beklemysheva K.A., Vasyukov A.V., Golubev V.I., Zhuravlev Yu.I., “Ob otsenke seismostoikosti elementov sovremennykh kompozitnykh nefteprovodov”, DAN, 479:1 (2018), 14–17 | MR | Zbl

[5] Golubev V., Khokhlov N., Grigorievyh D., Favorskaya A., “Numerical simulation of destruction processes by the grid-characteristic method”, Procedia Computer Science, 126 (2018), 1281–1288 | DOI | MR

[6] Golubev V.I., “The usage of grid-characteristic method in seismic migration problems”, Smart Innovation, Systems and Technologies, 133 (2019), 143–155 | DOI

[7] Biot M.A., “Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range”, J. Acoustical Society of America, 28:2 (1956), 168–178 | DOI | MR

[8] Dorovsky V.N., Perepechko Y.V., Podberezhnyy M.Y., Romenski E.I., “Thermodynamic compatible model of microfractured porous media and Stoneley waves”, J. Engineering Thermophysics, 25:2 (2016), 182–196 | DOI

[9] Dorovskii V.N., Perepechko Yu.V., Fedorov A.I., “Volny Stounli v teorii Bio-Dzhonsona i kontinualnoi teorii filtratsii”, Geologiya i geofizika, 53:5 (2012), 621–632

[10] Sinev A.V., Romenskii E.I., Dorovskii V.N., “Vliyanie glinistoi korki na volnovoe pole vblizi skvazhiny v poristoi nasyschennoi srede”, Geologiya i geofizika, 53:8 (2012), 1070–1077

[11] Chiavassa G., Lombard B., “Wave propagation across acoustic / Biot's media: A finite-difference method”, Commun. Comput. Phys., 13 (2012), 985–1012 | DOI | MR

[12] Rosenbaum J.H., “Synthetic microseismograms - logging in porous formations”, Geophysics, 39 (1974), 14–32 | DOI

[13] Winkler K.W., Liu H.L., Johnson D.L., “Permeability and borehole Stoneley waves: Comparison between experiment and theory”, Geophysics, 54 (1989), 66–75 | DOI

[14] Golubev V.I., Shevchenko A.V., Petrov I.B., “Ob uchete vodonasyschennosti donnykh osadkov v zadache morskoi seismicheskoi razvedki”, DAN, 488:3 (2019), 248–252 | Zbl

[15] Boganik G.N., Gurvich I.I., Seismorazvedka, AIS, Tver, 2006, 744 pp.