Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2020_492_a17, author = {D. M. Dvinskikh and S. S. Omelchenko and A. V. Gasnikov and A. I. Turin}, title = {Accelerated gradient sliding for minimizing a sum of functions}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {85--88}, publisher = {mathdoc}, volume = {492}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a17/} }
TY - JOUR AU - D. M. Dvinskikh AU - S. S. Omelchenko AU - A. V. Gasnikov AU - A. I. Turin TI - Accelerated gradient sliding for minimizing a sum of functions JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 85 EP - 88 VL - 492 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a17/ LA - ru ID - DANMA_2020_492_a17 ER -
%0 Journal Article %A D. M. Dvinskikh %A S. S. Omelchenko %A A. V. Gasnikov %A A. I. Turin %T Accelerated gradient sliding for minimizing a sum of functions %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 85-88 %V 492 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a17/ %G ru %F DANMA_2020_492_a17
D. M. Dvinskikh; S. S. Omelchenko; A. V. Gasnikov; A. I. Turin. Accelerated gradient sliding for minimizing a sum of functions. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 85-88. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a17/
[1] Gasnikov A.V., Sovremennye chislennye metody optimizatsii. Metod universalnogo gradientnogo spuska, MFTI, M., 2018
[2] Allen-Zhu Z., Hazan E., “Optimal Black-Box Reductions between Optimization Objectives”, Advances in Neural Information Processing Systems, 2016, 1614–1622
[3] Beznosikov A., Gorbunov E., Gasnikov A., “Derivative-Free Method for Decentralized Distributed Non-Smooth Optimization”, IFAC 2020. The 21st World Congress of the International Federation of Automatic Control
[4] Bottou L., Curtis F.E., Nocedal J., “Optimization Methods for Large-Scale Machine Learning”, Siam Review, 60:2 (2018), 223–311 | DOI | MR | Zbl
[5] Dvurechensky P., Gasnikov A., Tiurin A., Randomized Similar Triangles Method: A Unifying Framework for Accelerated Randomized Optimization Methods (Coordinate Descent, Directional Search, Derivative-Free Method), arXiv: 1707.08486
[6] Hazan E., Lecture Notes: Optimization for Machine Learning, arXiv: 1909.03550
[7] Ivanova A., Gasnikov A., Dvurechensky P., Dvinskikh D., Tyurin A., Vorontsova E., Pasechnyuk D., Oracle Complexity Separation in Convex Optimization, arXiv: 2002.02706
[8] Ivanova A., Grishchenko D., Gasnikov A., Shulgin E., Adaptive Catalyst for Smooth Convex Optimization, arXiv: 1911.11271
[9] Lan G., Lectures on Optimization. Methods for Machine Learning https://pwp.gatech.edu/guanghui-lan/publications/
[10] Lan G., Li Z., Zhou Y., “A Unified Variance-Reduced Accelerated Gradient Method for Convex Optimization”, Advances in Neural Information Processing Systems, 2019, 10462–10472
[11] Lin H., Mairal J., Harchaoui Z., “Catalyst Acceleration for First-Order Convex Optimization: from Theory to Practice”, J. Machine Learning Research, 18:1 (2017), 7854–7907 | MR
[12] Nesterov Yu., “Gradient Methods for Minimizing Composite Functions”, Math. Prog., 140:1 (2013), 125–161 | DOI | MR | Zbl
[13] Nesterov Yu., “Smooth Minimization of Non-Smooth Function”, Math. Program, 103:1 (2005), 127–152 | DOI | MR | Zbl
[14] Shalev-Shwartz S., Ben-David S., Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, Cambridge, 2014 | Zbl
[15] Shalev-Shwartz S., Shamir O., Srebro N., Sridharan K., “Stochastic Convex Optimization”, COLT 2009