Bounded gaps between primes of special form
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 75-78

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $0\alpha$, $\sigma1$ be arbitrary fixed constants, let $q_1$ be the set of primes satisfying the condition $\{q_n^\alpha\}\sigma$ and indexed in ascending order, and let $m\ge1$ be any fixed integer. Using an analogue of the Bombieri–Vinogradov theorem for the above set of primes, upper bounds are obtained for the constants $c(m)$ such that the inequality $q_{n+m}-q_n\le c(m)$ holds for infinitely many $n$.
Keywords: consecutive primes, small gaps, fractional parts, bounded gaps, sieve method, Bombieri–Vinogradov theorem.
@article{DANMA_2020_492_a15,
     author = {A. V. Shubin},
     title = {Bounded gaps between primes of special form},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {75--78},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a15/}
}
TY  - JOUR
AU  - A. V. Shubin
TI  - Bounded gaps between primes of special form
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 75
EP  - 78
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a15/
LA  - ru
ID  - DANMA_2020_492_a15
ER  - 
%0 Journal Article
%A A. V. Shubin
%T Bounded gaps between primes of special form
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 75-78
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a15/
%G ru
%F DANMA_2020_492_a15
A. V. Shubin. Bounded gaps between primes of special form. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 75-78. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a15/