Schur complement and continuous spectrum in a kinetic plasma model
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 70-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this paper is spectral analysis of an evolutionary semigroup generator describing the dynamics of a rarefied two-component plasma subjected to a self-consistent electromagnetic field. For the problem in question, the spectrum is given in terms of the dispersion relationship and an effective approach to the calculation of the instability index is developed.
Keywords: kinetic plasma model, generator of operator semigroup, Schur complement, dispersion relationship, instability index.
@article{DANMA_2020_492_a14,
     author = {S. A. Stepin},
     title = {Schur complement and continuous spectrum in a kinetic plasma model},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {70--74},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a14/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - Schur complement and continuous spectrum in a kinetic plasma model
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 70
EP  - 74
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a14/
LA  - ru
ID  - DANMA_2020_492_a14
ER  - 
%0 Journal Article
%A S. A. Stepin
%T Schur complement and continuous spectrum in a kinetic plasma model
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 70-74
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a14/
%G ru
%F DANMA_2020_492_a14
S. A. Stepin. Schur complement and continuous spectrum in a kinetic plasma model. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 70-74. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a14/

[1] Landau L.D., “O kolebaniyakh v elektronnoi plazme”, ZhETF, 16 (1946), 574–586 | Zbl

[2] Stiks T., Teoriya plazmennykh voln, Atomizdat, M., 1965, 344 pp. | MR

[3] Mikhailovskii A.B., Teoriya plazmennykh neustoichivostei, Atomizdat, M., 1970, 294 pp.

[4] Maslov V.P., Fedoryuk M.V., “Lineinaya teoriya zatukhaniya Landau”, Matem. sbornik, 127:4 (1985), 445–475 | MR | Zbl

[5] Arsenev A.A., Lektsii o kineticheskikh uravneniyakh, Nauka, M., 1992, 218 pp.

[6] Mouhot C., Villani C., “On Landau damping”, Acta Math., 207:1 (2011), 29–201 | DOI | MR | Zbl

[7] Degond P., “Spectral theory of the linearized Vlasov-Poisson equation”, Trans. Amer. Math. Soc., 294:2 (1986), 435–453 | DOI | MR | Zbl

[8] Stepin S.A., “Volnovye operatory dlya linearizovannogo uravneniya Boltsmana v odnoskorostnoi teorii perenosa”, Matem. sbornik, 192:1 (2001), 139–160 | DOI | MR | Zbl

[9] Kozlov V.V., “Obobschennoe kineticheskoe uravnenie Vlasova”, UMN, 63:4 (2008), 93–130 | DOI | MR | Zbl

[10] Pokhozhaev S.I., “O statsionarnykh resheniyakh uravnenii Vlasova-Puassona”, Differ. uravneniya, 46:4 (2010), 527–534 | MR | Zbl

[11] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970, 352 pp.

[12] Stepin S.A., “Otsenka chisla sobstvennykh znachenii nesamosopryazhennogo operatora Shredingera”, DAN, 89:2 (2014), 202–205 | MR | Zbl

[13] Lavrentev M.A., Shabat B.V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973, 736 pp. | MR

[14] Penrose O., “Electrostatic instabilities of a uniform non-Maxwellian plasma”, Physics of Fluids, 2:2 (1960), 258–264 | DOI