Schr\"odinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 65-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

According to a theorem of Andre Weil, there does not exist a standard Lebesgue measure on any infinite-dimensional locally convex space. Because of that, Schrödinger quantization of an infinite-dimensional Hamiltonian system is often defined using a $\sigma$-additive measure, which is not translation-invariant. In the present paper, a completely different approach is applied: we use the generalized Lebesgue measure, which is translation-invariant. In implicit form, such a measure was used in the first paper published by Feynman (1948). In this situation, pseudodifferential operators whose symbols are classical Hamiltonian functions are formally defined as in the finite-dimensional case. In particular, they use unitary Fourier transforms which map functions (on a finite-dimensional space) into functions. Such a definition of the infinite-dimensional unitary Fourier transforms has not been used in the literature.
Keywords: quantization, Schrödinger quantization, generalized Lebesgue measure, infinite-dimensional Hamiltonian systems, Heisenberg algebra, infinite-dimensional pseudodifferential operators.
@article{DANMA_2020_492_a13,
     author = {O. G. Smolyanov and N. N. Shamarov},
     title = {Schr\"odinger quantization of infinite-dimensional {Hamiltonian} systems with a nonquadratic {Hamiltonian} function},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {65--69},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a13/}
}
TY  - JOUR
AU  - O. G. Smolyanov
AU  - N. N. Shamarov
TI  - Schr\"odinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 65
EP  - 69
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a13/
LA  - ru
ID  - DANMA_2020_492_a13
ER  - 
%0 Journal Article
%A O. G. Smolyanov
%A N. N. Shamarov
%T Schr\"odinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 65-69
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a13/
%G ru
%F DANMA_2020_492_a13
O. G. Smolyanov; N. N. Shamarov. Schr\"odinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 65-69. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a13/

[1] Bogachev V.I., Smolyanov O.G., Topological vector spaces and their applications, Springer, 2017, 590 pp. | MR | Zbl

[2] Smolyanov O.G., Analiz na topologicheskikh lineinykh prostranstvakh i ego prilozheniya, Izd-vo MGU, M., 1979

[3] Kozlov V.V., Smolyanov O.G., “Gamiltonovy aspekty kvantovoi teorii”, DAN, 444:6 (2012), 607–611 | Zbl

[4] Bogolyubov N.N., Bogolyubov N.N. (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR

[5] Fok V.A., Raboty po kvantovoi teorii polya, Izd. 2-e, Izd-vo LKI, M., 2007

[6] Berezin F.A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR

[7] Dirak P., Printsipy kvantovoi mekhaniki, Nauka, M., 1979 | MR

[8] Smolyanov O.G., “Beskonechnomernye psevdodifferentsialnye operatory i kvantovanie Shredingera”, DAN, 263:3 (1982), 558–562 | MR | Zbl

[9] Orlov Yu.N., Sakbaev V.Zh., Smolyanov O.G., DAN, 486:6 (2019), 608–612

[10] Smolyanov O.G., Shamarov N.N., DAN, 488:3 (2019), 15–19

[11] Uglanov A.V., UMN, 28:4 (172) (1973), 227–228 | MR | Zbl

[12] Bentkus V.Yu., Matem. zametki, 14:4 (1973), 465–468 | MR | Zbl

[13] Feynman R.P., Phys. Rev., 20:2 (1948), 367–387 | Zbl

[14] Feynman R.P., Phys. Rev., 84:2 (1951), 108–128 | DOI | MR | Zbl

[15] Smolyanov O.G., Shavgulidze E.T., Kontinualnye integraly, Izd. 3-e, stereotipnoe, URSS, M., 2020