Schr\"odinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 65-69

Voir la notice de l'article provenant de la source Math-Net.Ru

According to a theorem of Andre Weil, there does not exist a standard Lebesgue measure on any infinite-dimensional locally convex space. Because of that, Schrödinger quantization of an infinite-dimensional Hamiltonian system is often defined using a $\sigma$-additive measure, which is not translation-invariant. In the present paper, a completely different approach is applied: we use the generalized Lebesgue measure, which is translation-invariant. In implicit form, such a measure was used in the first paper published by Feynman (1948). In this situation, pseudodifferential operators whose symbols are classical Hamiltonian functions are formally defined as in the finite-dimensional case. In particular, they use unitary Fourier transforms which map functions (on a finite-dimensional space) into functions. Such a definition of the infinite-dimensional unitary Fourier transforms has not been used in the literature.
Keywords: quantization, Schrödinger quantization, generalized Lebesgue measure, infinite-dimensional Hamiltonian systems, Heisenberg algebra, infinite-dimensional pseudodifferential operators.
@article{DANMA_2020_492_a13,
     author = {O. G. Smolyanov and N. N. Shamarov},
     title = {Schr\"odinger quantization of infinite-dimensional {Hamiltonian} systems with a nonquadratic {Hamiltonian} function},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {65--69},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a13/}
}
TY  - JOUR
AU  - O. G. Smolyanov
AU  - N. N. Shamarov
TI  - Schr\"odinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 65
EP  - 69
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a13/
LA  - ru
ID  - DANMA_2020_492_a13
ER  - 
%0 Journal Article
%A O. G. Smolyanov
%A N. N. Shamarov
%T Schr\"odinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 65-69
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a13/
%G ru
%F DANMA_2020_492_a13
O. G. Smolyanov; N. N. Shamarov. Schr\"odinger quantization of infinite-dimensional Hamiltonian systems with a nonquadratic Hamiltonian function. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 65-69. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a13/