@article{DANMA_2020_492_a11,
author = {V. L. Popov and Yu. G. Zarhin},
title = {Rings of integers in number fields and root lattices},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {58--61},
year = {2020},
volume = {492},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a11/}
}
TY - JOUR AU - V. L. Popov AU - Yu. G. Zarhin TI - Rings of integers in number fields and root lattices JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 58 EP - 61 VL - 492 UR - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a11/ LA - ru ID - DANMA_2020_492_a11 ER -
V. L. Popov; Yu. G. Zarhin. Rings of integers in number fields and root lattices. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 58-61. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a11/
[1] Andrade A.A., Interlando J.C., “Rotated ${{\mathbb{Z}}^{n}}$-lattices via real subfields of $\mathbb{Q}({{\zeta }_{{{{2}^{r}}}}})$”, TEMA - Tend. em Mat. Apl. e Comput., 20:3 (2019), 445–456 | DOI | MR
[2] Bayer-Fluckiger E., “Lattices and number fields”, Contemporary Math., 241, 1999, 69–84 | DOI | MR | Zbl
[3] Bayer-Fluckiger E., “Upper bounds for Euclidean minima of algebraic number fields”, J. Number Theory, 121 (2006), 305–323 | DOI | MR | Zbl
[4] Bayer-Fluckiger E., Maciak P., “Upper bounds for the Euclidean minima of abelian fields”, J. Théorie des Nombres de Bordeaux, 27 (2015), 689–697 | DOI | MR | Zbl
[5] Conway J.H., Sloane N.J.A., Sphere Packing, Lattices and Groups, Springer-Verlag, N.Y., 1988 | MR
[6] Martinet J., Perfect Lattices in Euclidean Spaces, Springer-Verlag, B., 2003 | MR | Zbl
[7] Milnor J., Husemoller D., Symmetric Bilinear Forms, Springer-Verlag, B., 1973 | MR | Zbl
[8] Witt E., “Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe”, Abh. Math. Sem. Univ. Hamb., 14 (1941), 289–322 | DOI | MR | Zbl