Antipodal Krein graphs and distance-regular graphs close to them
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 54-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

An antipodal nonbipartite distance-regular graph $\Gamma$ of diameter 3 has an intersection array $\{k(r-1)c_2,1;1,c_2,k\}$ ($c_2$) and eigenvalues $k,n,-1$, and $-m$, where $n$ and $-m$ are the roots of the quadratic equation $x^2-(a_1-c_2)x-k=0$. The Krein bound $q^3_{33}\geq0$ gives $m\leq n^2$ if $r\ne2$. In the case $m=n^2$, following Godsil, we call $\Gamma$ an antipodal Krein graph. The point graph $\Sigma$ of $GQ(q,q^2)$ having spread gives an antipodal Krein graph with $r=q+1$. If $\Sigma$ has an automorphism $\sigma$ of order $f$ that fixes every component of the spread, then the graph $\overline\Sigma=\Sigma/\langle\sigma\rangle$ whose vertices are $\sigma$-orbits on a point set and two orbits are adjacent if a vertex of one orbit is adjacent to a vertex of the other is a distance-regular graph with intersection array $\{q^3,((q+1)/(f-1)(q^2-1)f,1;1,(q^2-1)f,q^3\}$ and every local subgraph $\Delta(u)$ is pseudogeometric for $pG_{f-1}(q-1,(q+1)(f-1))$. If $f=2$, then we have a pseudogeometric graph for $GQ(q-1,q+1)$. Hence, a locally pseudo $GQ(4,6)$ graph with intersection array $\{125,96,1;1,48,125\}$ and a locally pseudo $GQ(6,8)$ graph with intersection array $\{343,288,1;1,96,343\}$ exist.
Keywords: distance-regular graph, antipodal Krein graph.
@article{DANMA_2020_492_a10,
     author = {A. A. Makhnev},
     title = {Antipodal {Krein} graphs and distance-regular graphs close to them},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {54--57},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a10/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - Antipodal Krein graphs and distance-regular graphs close to them
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 54
EP  - 57
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a10/
LA  - ru
ID  - DANMA_2020_492_a10
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T Antipodal Krein graphs and distance-regular graphs close to them
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 54-57
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a10/
%G ru
%F DANMA_2020_492_a10
A. A. Makhnev. Antipodal Krein graphs and distance-regular graphs close to them. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 54-57. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a10/

[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, B.–Heidelberg–N.Y., 1989 | MR | Zbl

[2] Godsil C., Australasian J. Comb., 6 (1992), 245–255 | MR | Zbl

[3] Gutnova A.K., Makhnev A.A., DAN, 461:6 (2015), 629–632 | MR | Zbl

[4] Makhnev A.A., Matem. sbornik, 191:7 (2000), 89–104 | DOI | MR | Zbl

[5] Gutnova A.K., Makhnev A.A., DAN, 438:5 (2011), 595–598 | MR | Zbl

[6] Gutnova A.K., Makhnev A.A., DAN, 462:6 (2015), 637–641 | MR | Zbl

[7] Gutnova A.K., Makhnev A.A., Vladik. matem. zhurnal, 18:3 (2016), 35–42 | MR | Zbl

[8] Jurishich A., Vidali J., Des. Codes Cryptogr., 65 (2012), 29–47 | DOI | MR