On some properties of superreflexive Besov spaces
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 5-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains results concerning superreflective Besov spaces $B^s_{p,q}(\mathbb{R}^n)$. Namely, expressions for convexity moduli and smoothness moduli with respect to the “canonical” norms are derived, and properties related to the finite representability of Banach spaces and linear compact operators in $B^s_{p,q}(\mathbb{R}^n)$ are examined. Additionally, inequalities of the Prus–Smarzewski type for arbitrary equivalent norms and inequalities of the James–Gurariy type are presented. Based on the latter, two-sided estimates for the norms of elements in $B^s_{p,q}(\mathbb{R}^n)$ can be obtained in terms of the expansion coefficients of these elements in unconditional normalized Schauder bases.
Keywords: superreflexivity, finite representability, Besov spaces, convexity moduli, smoothness moduli.
@article{DANMA_2020_492_a0,
     author = {A. N. Agadzhanov},
     title = {On some properties of superreflexive {Besov} spaces},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {5--10},
     publisher = {mathdoc},
     volume = {492},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_492_a0/}
}
TY  - JOUR
AU  - A. N. Agadzhanov
TI  - On some properties of superreflexive Besov spaces
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 5
EP  - 10
VL  - 492
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_492_a0/
LA  - ru
ID  - DANMA_2020_492_a0
ER  - 
%0 Journal Article
%A A. N. Agadzhanov
%T On some properties of superreflexive Besov spaces
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 5-10
%V 492
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_492_a0/
%G ru
%F DANMA_2020_492_a0
A. N. Agadzhanov. On some properties of superreflexive Besov spaces. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 492 (2020), pp. 5-10. http://geodesic.mathdoc.fr/item/DANMA_2020_492_a0/

[1] Pietsch A., History of Banach spaces and linear operators, Birkhauser, Boston, 2007 | MR | Zbl

[2] Barbu V., Precupanu T., Convexity and optimization in Banach spaces, Springer, 2012 | MR | Zbl

[3] Schuster T., Kaltenbacher B., Hofmann B., Kazimierski K.S., Regularization methods in Banach spaces, B.–Boston, 2012 | MR | Zbl

[4] Balachandran K., Karthikeyan S., Int. J. Appl. Math. Comput. Sci., 22:3 (2012), 523–531 | DOI | MR | Zbl

[5] Hern'andez E., O'Regan D., J. Franklin Institute, 346 (2009), 95–101 | DOI | MR | Zbl

[6] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980

[7] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986

[8] Sawano Y., Theory of Besov spaces, Springer, 2018 | MR | Zbl

[9] James R., Can. J. Math., XXIV:5 (1972), 896–904 | DOI | Zbl

[10] Pisier G., Martingale in Banach spaces, Cambridge University Press, Cambridge, 2016 | MR

[11] Prus. B., Smarzewski R., J. Math. Anal. Appl., 121 (1987), 10–21 | DOI | MR | Zbl

[12] James R., Pacif. J. Math., 41:2 (1972), 409–419 | DOI | MR

[13] Gurarii V.I., Gurarii N.I., Izv. AN SSSR. Seriya mat., 1971

[14] Chivukula R. Rao, Sundaresan K., J. Math. Anal. Appl., 72 (1979), 435–445 | DOI | MR | Zbl

[15] Agadzhanov A.N., DAN, 421:3 (2008), 295–298 | MR | Zbl