Generalized primitive potentials
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 47-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, we introduced a new class of bounded potentials of the one-dimensional stationary Schrödinger operator on the real axis, and a corresponding family of solutions of the KdV hierarchy. These potentials, which we call primitive, are obtained as limits of rapidly decreasing reflectionless potentials, or multisoliton solutions of KdV. In this note, we introduce generalized primitive potentials, which are obtained as limits of all rapidly decreasing potentials of the Schrödinger operator. These potentials are constructed by solving a contour problem, and are determined by a pair of positive functions on a finite interval and a functional parameter on the real axis.
Keywords: integrable systems, Schrödinger equation, primitive potentials.
@article{DANMA_2020_491_a8,
     author = {V. E. Zakharov and D. V. Zakharov},
     title = {Generalized primitive potentials},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {47--52},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a8/}
}
TY  - JOUR
AU  - V. E. Zakharov
AU  - D. V. Zakharov
TI  - Generalized primitive potentials
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 47
EP  - 52
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a8/
LA  - ru
ID  - DANMA_2020_491_a8
ER  - 
%0 Journal Article
%A V. E. Zakharov
%A D. V. Zakharov
%T Generalized primitive potentials
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 47-52
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a8/
%G ru
%F DANMA_2020_491_a8
V. E. Zakharov; D. V. Zakharov. Generalized primitive potentials. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 47-52. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a8/

[1] Dyachenko S., Zakharov D., Zakharov V., “Primitive Potentials and Bounded Solutions of the KdV Equation”, Phys. D, 333 (2016), 148–156 | DOI | MR | Zbl

[2] Zakharov D., Dyachenko S., Zakharov V., “Bounded Solutions of KdV and Non-Periodic One-Gap Potentials in Quantum Mechanics”, Lett. Math. Phys, 106:6 (2016), 731–740 | DOI | MR | Zbl

[3] Zakharov D., Zakharov V., “Non-Periodic One-Gap Potentials in Quantum Mechanics. Geometric Methods in Physics”, XXXV Workshop (2016), Trends in Mathematics, Springer International Publishing, 2018, 213–225 | MR

[4] Nabelek P., Zakharov D., Zakharov V., “On Symmetric Primitive Potentials”, J. Integrable Systems, 4:1 (2019), xyz006 | DOI | MR | Zbl

[5] Dyachenko S.A., Nabelek P., Zakharov D.V., Zakharov V.E., “Primitivnye resheniya uravneniya Kortevega-de Friza”, TMF, 202:3 (2020), 382–391 | DOI | MR

[6] Nabelek P., “Algebro-Geometric Finite Gap Solutions to the Korteweg-de Vries Equation as Primitive Solutions”, Physica D (to appear) | MR

[7] Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevskii L.P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980, 320 pp. | MR

[8] Deift P., Trubowitz E., “Inverse Scattering on the Line”, Comm. Pure Appl. Math., 32:2 (1979), 121–251 | DOI | MR | Zbl

[9] Grunert K., Teschl G., “Long-Time Asymptotics for the Korteweg-de Vries Equation Via Nonlinear Steepest Descent”, Math. Phys., Anal. and Geom., 12:3 (2009), 287–324 | DOI | MR | Zbl

[10] Zakharov V.E., Manakov S.V., “Postroenie mnogomernykh nelineinykh integriruemykh sistem i ikh reshenii”, Funkts. analiz i ego pril., 19:2 (1985), 11–25 | MR

[11] Kuznetsov E.A., Mikhailov A.V., “O polnoi integriruemosti dvumernoi klassicheskoi modeli Tirringa”, TMF, 30:3 (1977), 303–314 | MR