On global classical solutions of hyperbolic differential-difference equations
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 44-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-parameter family of global solutions of a two-dimensional hyperbolic differential-difference equation with an operator acting with respect to a space variable is constructed. A theorem is proved stating that the resulting solutions are classical for all parameter values if the symbol of the difference operator of the equation has a positive real part. Classes of equations for which this condition is satisfied are given.
Keywords: hyperbolic equation, differential-difference equation, classical solution, Fourier transform.
@article{DANMA_2020_491_a7,
     author = {N. V. Zaitseva},
     title = {On global classical solutions of hyperbolic differential-difference equations},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {44--46},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a7/}
}
TY  - JOUR
AU  - N. V. Zaitseva
TI  - On global classical solutions of hyperbolic differential-difference equations
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 44
EP  - 46
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a7/
LA  - ru
ID  - DANMA_2020_491_a7
ER  - 
%0 Journal Article
%A N. V. Zaitseva
%T On global classical solutions of hyperbolic differential-difference equations
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 44-46
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a7/
%G ru
%F DANMA_2020_491_a7
N. V. Zaitseva. On global classical solutions of hyperbolic differential-difference equations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 44-46. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a7/

[1] Skubachevskii A.L., Elliptic functional-differential equations and applications, Birkhauser, Basel–Boston–B., 1997, 294 pp. | MR | Zbl

[2] Skubachevskii A.L., “Neklassicheskie kraevye zadachi. I”, Sovrem. mat. Fundam. napravl., 26, 2007, 3–132

[3] Skubachevskii A.L., “Neklassicheskie kraevye zadachi. II”, Sovrem. mat. Fundam. napravl., 33, 2009, 3–179

[4] Skubachevskii A.L., “Kraevye zadachi dlya ellipticheskikh funktsionalno-differentsialnykh uravnenii i ikh prilozheniya”, Uspekhi matem. nauk, 71:5(431) (2016), 3–112 | DOI | MR | Zbl

[5] Muravnik A.B., “Funktsionalno-differentsialnye parabolicheskie uravneniya: integralnye predstavleniya i kachestvennye svoistva reshenii zadachi Koshi”, Sovrem. mat. Fundam. napravl., 52, 2014, 3–143

[6] Muravnik A.B., “O zadache Dirikhle v poluploskosti dlya differentsialno-raznostnykh ellipticheskikh uravnenii”, Sovrem. mat. Fundam. napravl., 60, 2016, 102–113

[7] Muravnik A.B., “Asimptoticheskie svoistva reshenii zadachi Dirikhle v poluploskosti dlya nekotorykh differentsialno-raznostnykh ellipticheskikh uravnenii”, Matem. zametki, 100:4 (2016), 566–576 | DOI | Zbl

[8] Muravnik A., “On the half-plane Diriclet problem for differential-difference elliptic equations with several nonlocal terms”, Math. Model. Nat. Phenom., 12:6 (2017), 130–143 | DOI | MR | Zbl

[9] Muravnik A.B., “Asimptoticheskie svoistva reshenii dvumernykh differentsialno-raznostnykh ellipticheskikh zadach”, Sovrem. mat. Fundam. napravl., 63, no. 4, 2017, 678–688

[10] Muravnik A.B., “Ellipticheskie zadachi s nelokalnym potentsialom, voznikayuschie v modelyakh nelineinoi optiki”, Matem. zametki, 105:5 (2019), 747–762 | DOI | MR | Zbl

[11] Vlasov V.V., Shmatov K.I., “Korrektnaya razreshimost uravnenii giperbolicheskogo tipa s zapazdyvaniem v gilbertovom prostranstve”, Tr. MIAN, 243, 2003, 127–137 | Zbl

[12] Vlasov V.V., Medvedev D.A., “Funktsionalno-differentsialnye uravneniya v prostranstvakh Soboleva i svyazannye s nimi voprosy spektralnoi teorii”, Sovrem. mat. Fundam. napravl., 30, 2008, 3–173

[13] Gelfand I.M., Shilov G.E., Nekotorye voprosy teorii differentsialnykh uravnenii, Obobschennye funktsii, 3, Fizmatgiz, M., 1958, 276 pp.