On global classical solutions of hyperbolic differential-difference equations
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 44-46

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-parameter family of global solutions of a two-dimensional hyperbolic differential-difference equation with an operator acting with respect to a space variable is constructed. A theorem is proved stating that the resulting solutions are classical for all parameter values if the symbol of the difference operator of the equation has a positive real part. Classes of equations for which this condition is satisfied are given.
Keywords: hyperbolic equation, differential-difference equation, classical solution, Fourier transform.
@article{DANMA_2020_491_a7,
     author = {N. V. Zaitseva},
     title = {On global classical solutions of hyperbolic differential-difference equations},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {44--46},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a7/}
}
TY  - JOUR
AU  - N. V. Zaitseva
TI  - On global classical solutions of hyperbolic differential-difference equations
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 44
EP  - 46
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a7/
LA  - ru
ID  - DANMA_2020_491_a7
ER  - 
%0 Journal Article
%A N. V. Zaitseva
%T On global classical solutions of hyperbolic differential-difference equations
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 44-46
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a7/
%G ru
%F DANMA_2020_491_a7
N. V. Zaitseva. On global classical solutions of hyperbolic differential-difference equations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 44-46. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a7/