Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2020_491_a5, author = {A. V. Dymov and S. B. Kuksin}, title = {On the {Zakharov--Lvov} stochastic model for wave turbulence}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {29--37}, publisher = {mathdoc}, volume = {491}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a5/} }
TY - JOUR AU - A. V. Dymov AU - S. B. Kuksin TI - On the Zakharov--Lvov stochastic model for wave turbulence JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 29 EP - 37 VL - 491 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a5/ LA - ru ID - DANMA_2020_491_a5 ER -
%0 Journal Article %A A. V. Dymov %A S. B. Kuksin %T On the Zakharov--Lvov stochastic model for wave turbulence %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 29-37 %V 491 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a5/ %G ru %F DANMA_2020_491_a5
A. V. Dymov; S. B. Kuksin. On the Zakharov--Lvov stochastic model for wave turbulence. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 29-37. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a5/
[1] Buckmaster T., Germain P., Hani Z., Shatah J., Onset of the wave turbulence description of the longtime behaviour of the nonlinear Schrodinger equation, 2019, arXiv: 1907.03667 | MR
[2] Dymov A., Kuksin S., Formal expansions in stochastic model for wave turbulence. 1: kinetic limit, 2019, arXiv: 1907.04531 | MR
[3] Dymov A., Kuksin S., Formal expansions in stochastic model for wave turbulence. 2: method of diagram decomposition, 2019, arXiv: 1907.02279 | MR
[4] Falkovich G., “Introduction to turbulence theory”, Non-equilibrium statistical mechanics and turbulence, eds. J. Cardy, G. Falkovich, K. Gawedzki, Cambridge Univ. Press, Cambridge, 2008, 1–43 | MR
[5] Faou E., Linearized wave turbulence convergence results for three-wave systems, 2018, arXiv: 1805.11269 | MR
[6] Faou E., Germain P., Hani Z., “The Weakly Nonlinear Large-Box Limit of the 2D Cubic Nonlinear Schrodinger Equation”, J. Amer. Math. Soc., 29 (2016), 915–982 | DOI | MR | Zbl
[7] Kuksin S., “Asymptotical Expansions for Some Integrals of Quotients with Degenerated Divisors”, Russ J. Math. Phys., 24 (2017), 497–507 | DOI | MR
[8] Kuksin S., Maiocchi A., “Derivation of a Wave Kinetic Equation from the Resonant-Averaged Stochastic NLS Equation”, Physica D, 309 (2015), 65–70 | DOI | MR | Zbl
[9] Lukkarinen J., Spohn H., “Weakly Nonlinear Schrodinger Equation with Random Initial Data”, Invent. Math., 183 (2015), 79–188 | DOI | MR
[10] Nazarenko S., Wave Turbulence, Springer, 2011 | MR | Zbl
[11] Newell A.C., Rumpf B., “Wave Turbulence”, Annu. Rev. Fluid Mech., 43 (2011), 59–78 | DOI | MR | Zbl
[12] Zakharov V.E., Lvov V.S., “Statisticheskoe opisanie volnovykh polei”, Izvestiya vuzov. Radiofizika, 18:10 (1975), 1470–1487 | MR
[13] Zakharov V., L'vov V., Falkovich G., Kolmogorov Spectra of Turbulence, Springer, 1992 | MR | Zbl