On the Zakharov--Lvov stochastic model for wave turbulence
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 29-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss a number of rigorous results in the stochastic model for wave turbulence due to Zakharov–L'vov. Namely, we consider the damped/driven (modified) cubic nonlinear Schrödinger equation on a large torus and decompose its solutions to formal series in the amplitude. We show that when the amplitude goes to zero and the torus’ size goes to infinity the energy spectrum of the quadratic truncation of this series converges to a solution of the damped/driven wave kinetic equation. Next we discuss higher order truncations of the series.
Keywords: wave turbulence, energy spectrum, wave kinetic equation, kinetic limit, nonlinear Schrödinger equation, stochastic perturbation.
@article{DANMA_2020_491_a5,
     author = {A. V. Dymov and S. B. Kuksin},
     title = {On the {Zakharov--Lvov} stochastic model for wave turbulence},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {29--37},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a5/}
}
TY  - JOUR
AU  - A. V. Dymov
AU  - S. B. Kuksin
TI  - On the Zakharov--Lvov stochastic model for wave turbulence
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 29
EP  - 37
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a5/
LA  - ru
ID  - DANMA_2020_491_a5
ER  - 
%0 Journal Article
%A A. V. Dymov
%A S. B. Kuksin
%T On the Zakharov--Lvov stochastic model for wave turbulence
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 29-37
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a5/
%G ru
%F DANMA_2020_491_a5
A. V. Dymov; S. B. Kuksin. On the Zakharov--Lvov stochastic model for wave turbulence. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 29-37. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a5/

[1] Buckmaster T., Germain P., Hani Z., Shatah J., Onset of the wave turbulence description of the longtime behaviour of the nonlinear Schrodinger equation, 2019, arXiv: 1907.03667 | MR

[2] Dymov A., Kuksin S., Formal expansions in stochastic model for wave turbulence. 1: kinetic limit, 2019, arXiv: 1907.04531 | MR

[3] Dymov A., Kuksin S., Formal expansions in stochastic model for wave turbulence. 2: method of diagram decomposition, 2019, arXiv: 1907.02279 | MR

[4] Falkovich G., “Introduction to turbulence theory”, Non-equilibrium statistical mechanics and turbulence, eds. J. Cardy, G. Falkovich, K. Gawedzki, Cambridge Univ. Press, Cambridge, 2008, 1–43 | MR

[5] Faou E., Linearized wave turbulence convergence results for three-wave systems, 2018, arXiv: 1805.11269 | MR

[6] Faou E., Germain P., Hani Z., “The Weakly Nonlinear Large-Box Limit of the 2D Cubic Nonlinear Schrodinger Equation”, J. Amer. Math. Soc., 29 (2016), 915–982 | DOI | MR | Zbl

[7] Kuksin S., “Asymptotical Expansions for Some Integrals of Quotients with Degenerated Divisors”, Russ J. Math. Phys., 24 (2017), 497–507 | DOI | MR

[8] Kuksin S., Maiocchi A., “Derivation of a Wave Kinetic Equation from the Resonant-Averaged Stochastic NLS Equation”, Physica D, 309 (2015), 65–70 | DOI | MR | Zbl

[9] Lukkarinen J., Spohn H., “Weakly Nonlinear Schrodinger Equation with Random Initial Data”, Invent. Math., 183 (2015), 79–188 | DOI | MR

[10] Nazarenko S., Wave Turbulence, Springer, 2011 | MR | Zbl

[11] Newell A.C., Rumpf B., “Wave Turbulence”, Annu. Rev. Fluid Mech., 43 (2011), 59–78 | DOI | MR | Zbl

[12] Zakharov V.E., Lvov V.S., “Statisticheskoe opisanie volnovykh polei”, Izvestiya vuzov. Radiofizika, 18:10 (1975), 1470–1487 | MR

[13] Zakharov V., L'vov V., Falkovich G., Kolmogorov Spectra of Turbulence, Springer, 1992 | MR | Zbl