Modeling of radiative heat conduction on high-performance computing systems
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 111-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

For problems related to radiative heat conduction, an algorithm is proposed that is well adapted to the architecture of systems with extramassive parallelism. According to the underlying method, a term with a small parameter multiplying the second time derivative is included in the model describing the process. Examples of numerical results obtained using this model on detailed spatial meshes are given, and their comparison with results based on the classical radiative heat conduction model are presented.
Keywords: radiative heat conduction, hyperbolic model of heat conduction, explicit difference scheme.
@article{DANMA_2020_491_a22,
     author = {B. N. Chetverushkin and O. G. Olkhovskaya},
     title = {Modeling of radiative heat conduction on high-performance computing systems},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {111--114},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a22/}
}
TY  - JOUR
AU  - B. N. Chetverushkin
AU  - O. G. Olkhovskaya
TI  - Modeling of radiative heat conduction on high-performance computing systems
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 111
EP  - 114
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a22/
LA  - ru
ID  - DANMA_2020_491_a22
ER  - 
%0 Journal Article
%A B. N. Chetverushkin
%A O. G. Olkhovskaya
%T Modeling of radiative heat conduction on high-performance computing systems
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 111-114
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a22/
%G ru
%F DANMA_2020_491_a22
B. N. Chetverushkin; O. G. Olkhovskaya. Modeling of radiative heat conduction on high-performance computing systems. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 111-114. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a22/

[1] Zeldovich Ya.B., Raizer Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatlit, M., 2008, 653 pp.

[2] Chetverushkin B.N., Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985, 304 pp.

[3] Bisikalo D.V., Zhilkin A.G., Boyarchuk A.A., Gazodinamika tesnykh dvoinykh zvezd, Fizmatlit, M., 2013, 632 pp.

[4] Kuzenov V.V., Lebo A.I., Lebo I.G., Ryzhkov S.V., Fiziko-matematicheskie modeli i metody rascheta vozdeistviya moschnykh lazernykh i plazmennykh impulsov na kondensirovannye i gazovye sredy, Izd-vo MGTU im. N.E. Baumana, M., 2017, 326 pp.

[5] Nayak B., Menon S.V.G., “Thermonuclear Burn of DT and DD Fuels Using Three-Temperature Model: Non-Equilibrium Effects”, Laser and Particle Beams, 30:04 (2012), 517–523 | DOI

[6] Samarskii A.A., Gulin A.V., Ustoichivost raznostnykh skhem, Izd. 3-e, stereotip., URSS, M., 2009, 384 pp. | MR

[7] Golant V.E., Zhilinskii A.P., Sakharov I.E., Osnovy fiziki plazmy, Atomizdat, M., 1977, 384 pp.

[8] Chetverushkin B.N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004, 328 pp.

[9] Repin S.I., Chetverushkin B.N., “Otsenki raznosti priblizhennykh reshenii zadach koshi dlya parabolicheskogo diffuzionnogo uravneniya i giperbolicheskogo uravneniya s malym parametrom”, DAN, 451:3 (2013), 255 | Zbl

[10] Myshetskaya E.E., Tishkin V.F., “Otsenki vliyaniya giperbolizatsii dlya uravneniya teploprovodnosti”, ZhVMiMF, 55:8 (2015), 1299 | MR | Zbl

[11] Surnachev M.D., Tishkin V.F., Chetverushkin B.N., “O zakonakh sokhraneniya dlya giperbolizirovannykh uravnenii”, Differents. uravneniya, 52:7 (2016), 859 | DOI | Zbl

[12] Chetverushkin B.N., Gulin A.V., “Yavnye skhemy i modelirovanie na vychislitelnykh sistemakh sverkhvysokoi proizvoditelnosti”, DAN, 446:5 (2012), 501–503 | Zbl