Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2020_491_a21, author = {M. V. Muratov and V. A. Biryukov and I. B. Petrov}, title = {Solution of the fracture detection problem by machine learning methods}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {107--110}, publisher = {mathdoc}, volume = {491}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a21/} }
TY - JOUR AU - M. V. Muratov AU - V. A. Biryukov AU - I. B. Petrov TI - Solution of the fracture detection problem by machine learning methods JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 107 EP - 110 VL - 491 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a21/ LA - ru ID - DANMA_2020_491_a21 ER -
%0 Journal Article %A M. V. Muratov %A V. A. Biryukov %A I. B. Petrov %T Solution of the fracture detection problem by machine learning methods %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 107-110 %V 491 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a21/ %G ru %F DANMA_2020_491_a21
M. V. Muratov; V. A. Biryukov; I. B. Petrov. Solution of the fracture detection problem by machine learning methods. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 107-110. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a21/
[1] Krizhevsky A., Sustskever I., Hinton G.E., “Imagenet Classification with Deep Convolutional Neural Networks”, Advances in Neural Information Processing Systems, 2012, 1097–1105 | DOI
[2] Szegedy C., Toshev A., Erhan D., “Deep Neural Networks for Object Detection”, Proc. NIPS'13 Proceedings of the 26th Intern. Conf. on Neural Information Processing Systems, v. 2, 2013, 2553–2561
[3] Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y., “Generative adversarial nets”, Advances in Neural Information Processing Systems, 2014, 2672–2680
[4] Zhang C., Frogner C., Araya-Polo M., Hohl D., “Machine-Learning Based Automated Fault Detection in Seismic Traces”, EAGE Conference and Exhibition, 2014 | DOI
[5] Araya-Polo M., Dahlke T., Frogner C., Zhang C., Poggio T., Hohl D., “Automated Fault Detection without Seismic Processing”, The leading eadge, 36:3 (2017), 194–280 | DOI
[6] Wu Yu., Lin Yo., Zhou Zh., Delorey A., Seismic-Net: A Deep Densely Connected Neural Network to Detect Seismic Events, 2018, arXiv: 1802.02241
[7] Menga M., Chua Y.J., Woutersonb E., Ong C.P.K., “Ultrasonic Signal Classification and Imaging System for Composite Materials via Deep Convolutional Neural Networks”, Neurocomputing, 257 (2017), 128–135 | DOI
[8] Petrov I.B., Muratov M.V., “The Application of Grid-Characteristic Method in Solution of Fractured Formations Exploration Seismology Direct Problems (Review Article)”, Matem. Mod., 31:4 (2019), 33–56 | DOI | MR | Zbl
[9] Magomedov K.M, Kholodov A.S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988, 288 pp. | MR
[10] Ivanov A.M., Khokhlov N.I., “Parallel Implementation of the Grid-Characteristic Method in the Case of Explicit Contact Boundaries”, Computer Research and Modeling, 10:5 (2018), 667–678 | DOI
[11] Muratov M.V., Petrov I.B., “Application of Fractures Mathematical Models in Exploration Seismology Problems Modeling”, Smart Innovation, Systems and Technologies, 2019, 120–131 | DOI
[12] Favorskaya A., Petrov I., Grinevskiy A., “Numerical Simulation of Fracturing in Geological Medium”, Procedia Computer Science, 112 (2017), 1216–1224 | DOI