Solution of the fracture detection problem by machine learning methods
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 107-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse problems of fracture exploration seismology are solved using machine learning methods. A single fracture of fixed size and subvertical orientation is considered in the two-dimensional case. The spatial position and the inclination angle of the fracture are determined using a neural network. The training set consists of solutions of direct problems produced by the grid-characteristic method on regular rectangular meshes in the form of synthetic seismograms obtained by measuring the vertical velocity on the surface of the medium.
Keywords: mathematical modeling, grid-characteristic method, machine learning, neural networks, inverse exploration seismology problem, fracture.
@article{DANMA_2020_491_a21,
     author = {M. V. Muratov and V. A. Biryukov and I. B. Petrov},
     title = {Solution of the fracture detection problem by machine learning methods},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {107--110},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a21/}
}
TY  - JOUR
AU  - M. V. Muratov
AU  - V. A. Biryukov
AU  - I. B. Petrov
TI  - Solution of the fracture detection problem by machine learning methods
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 107
EP  - 110
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a21/
LA  - ru
ID  - DANMA_2020_491_a21
ER  - 
%0 Journal Article
%A M. V. Muratov
%A V. A. Biryukov
%A I. B. Petrov
%T Solution of the fracture detection problem by machine learning methods
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 107-110
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a21/
%G ru
%F DANMA_2020_491_a21
M. V. Muratov; V. A. Biryukov; I. B. Petrov. Solution of the fracture detection problem by machine learning methods. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 107-110. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a21/

[1] Krizhevsky A., Sustskever I., Hinton G.E., “Imagenet Classification with Deep Convolutional Neural Networks”, Advances in Neural Information Processing Systems, 2012, 1097–1105 | DOI

[2] Szegedy C., Toshev A., Erhan D., “Deep Neural Networks for Object Detection”, Proc. NIPS'13 Proceedings of the 26th Intern. Conf. on Neural Information Processing Systems, v. 2, 2013, 2553–2561

[3] Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y., “Generative adversarial nets”, Advances in Neural Information Processing Systems, 2014, 2672–2680

[4] Zhang C., Frogner C., Araya-Polo M., Hohl D., “Machine-Learning Based Automated Fault Detection in Seismic Traces”, EAGE Conference and Exhibition, 2014 | DOI

[5] Araya-Polo M., Dahlke T., Frogner C., Zhang C., Poggio T., Hohl D., “Automated Fault Detection without Seismic Processing”, The leading eadge, 36:3 (2017), 194–280 | DOI

[6] Wu Yu., Lin Yo., Zhou Zh., Delorey A., Seismic-Net: A Deep Densely Connected Neural Network to Detect Seismic Events, 2018, arXiv: 1802.02241

[7] Menga M., Chua Y.J., Woutersonb E., Ong C.P.K., “Ultrasonic Signal Classification and Imaging System for Composite Materials via Deep Convolutional Neural Networks”, Neurocomputing, 257 (2017), 128–135 | DOI

[8] Petrov I.B., Muratov M.V., “The Application of Grid-Characteristic Method in Solution of Fractured Formations Exploration Seismology Direct Problems (Review Article)”, Matem. Mod., 31:4 (2019), 33–56 | DOI | MR | Zbl

[9] Magomedov K.M, Kholodov A.S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988, 288 pp. | MR

[10] Ivanov A.M., Khokhlov N.I., “Parallel Implementation of the Grid-Characteristic Method in the Case of Explicit Contact Boundaries”, Computer Research and Modeling, 10:5 (2018), 667–678 | DOI

[11] Muratov M.V., Petrov I.B., “Application of Fractures Mathematical Models in Exploration Seismology Problems Modeling”, Smart Innovation, Systems and Technologies, 2019, 120–131 | DOI

[12] Favorskaya A., Petrov I., Grinevskiy A., “Numerical Simulation of Fracturing in Geological Medium”, Procedia Computer Science, 112 (2017), 1216–1224 | DOI