Reciprocal function method for Cauchy problems with first-order poles
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 102-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the numerical solution of the Cauchy problem with multiple poles, we propose a reciprocal function method. In the case of first-order poles, it makes it possible to continue the solution through the poles and to determine the solution and the pole positions with good accuracy. The method allows one to employ conventional explicit and implicit schemes, for example, explicit Runge–Kutta schemes. A test problem with multiple poles is computed as an example. The proposed method is useful for construction of software for direct computation of special functions.
Keywords: Cauchy problem, singularities, continuation through a pole.
@article{DANMA_2020_491_a20,
     author = {A. A. Belov and N. N. Kalitkin},
     title = {Reciprocal function method for {Cauchy} problems with first-order poles},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {102--106},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a20/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - N. N. Kalitkin
TI  - Reciprocal function method for Cauchy problems with first-order poles
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 102
EP  - 106
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a20/
LA  - ru
ID  - DANMA_2020_491_a20
ER  - 
%0 Journal Article
%A A. A. Belov
%A N. N. Kalitkin
%T Reciprocal function method for Cauchy problems with first-order poles
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 102-106
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a20/
%G ru
%F DANMA_2020_491_a20
A. A. Belov; N. N. Kalitkin. Reciprocal function method for Cauchy problems with first-order poles. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 102-106. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a20/

[1] Yanke E., Emde F., Lesh F., Spetsialnye funktsii. Formuly. Grafiki. Tablitsy, Nauka, M., 1964

[2] NIST Digital Library of Mathematical Functions, https://dlmf.nist.gov

[3] Alshina E.A., Kalitkin N.N., Koryakin P.V., “Diagnostika osobennostei tochnogo resheniya metodom sguscheniya setok”, DAN, 404:3 (2005), 295–299 | MR | Zbl

[4] Alshina E.A., Kalitkin N.N., Koryakin P.V., “Diagnostika osobennostei tochnogo resheniya pri raschetakh s kontrolem tochnosti”, ZhVMiMF, 45:10 (2005), 1837–1847 | MR | Zbl

[5] Belov A.A., “Chislennoe obnaruzhenie i issledovanie singulyarnostei resheniya differentsialnykh uravnenii”, DAN, 468:1 (2016), 21–25 | Zbl

[6] Belov A.A., “Chislennaya diagnostika razrusheniya reshenii differentsialnykh uravnenii”, ZhVMiMF, 57:1 (2017), 91–102

[7] Belov A.A., Kalitkin N.N., “Ekonomichnye metody chislennogo integrirovaniya zadachi Koshi dlya zhestkikh sistem ODU”, Diff. uravneniya, 55:7 (2019), 907–918 | DOI | Zbl

[8] Rosenbrock H.H., “Some general implicit processes for the numerical solution of differential equations”, Computer J., 5:4 (1963), 329–330 | DOI | MR | Zbl

[9] Poshivailo I.P., Zhestkie i plokho obuslovlennye nelineinye modeli i metody ikh rascheta, Diss. ...kand. fiz.-mat. nauk: 05.13.18, M., 2015

[10] Shalashilin V.I., Kuznetsov E.B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, Editorial URSS, M., 1999 | MR

[11] Belov A.A., Kalitkin N.N., Poshivailo I.P., “Geometricheski-adaptivnye setki dlya zhestkikh zadach Koshi”, DAN, 466:3 (2016), 276–281 | Zbl