Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2020_491_a20, author = {A. A. Belov and N. N. Kalitkin}, title = {Reciprocal function method for {Cauchy} problems with first-order poles}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {102--106}, publisher = {mathdoc}, volume = {491}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a20/} }
TY - JOUR AU - A. A. Belov AU - N. N. Kalitkin TI - Reciprocal function method for Cauchy problems with first-order poles JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 102 EP - 106 VL - 491 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a20/ LA - ru ID - DANMA_2020_491_a20 ER -
%0 Journal Article %A A. A. Belov %A N. N. Kalitkin %T Reciprocal function method for Cauchy problems with first-order poles %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 102-106 %V 491 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a20/ %G ru %F DANMA_2020_491_a20
A. A. Belov; N. N. Kalitkin. Reciprocal function method for Cauchy problems with first-order poles. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 102-106. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a20/
[1] Yanke E., Emde F., Lesh F., Spetsialnye funktsii. Formuly. Grafiki. Tablitsy, Nauka, M., 1964
[2] NIST Digital Library of Mathematical Functions, https://dlmf.nist.gov
[3] Alshina E.A., Kalitkin N.N., Koryakin P.V., “Diagnostika osobennostei tochnogo resheniya metodom sguscheniya setok”, DAN, 404:3 (2005), 295–299 | MR | Zbl
[4] Alshina E.A., Kalitkin N.N., Koryakin P.V., “Diagnostika osobennostei tochnogo resheniya pri raschetakh s kontrolem tochnosti”, ZhVMiMF, 45:10 (2005), 1837–1847 | MR | Zbl
[5] Belov A.A., “Chislennoe obnaruzhenie i issledovanie singulyarnostei resheniya differentsialnykh uravnenii”, DAN, 468:1 (2016), 21–25 | Zbl
[6] Belov A.A., “Chislennaya diagnostika razrusheniya reshenii differentsialnykh uravnenii”, ZhVMiMF, 57:1 (2017), 91–102
[7] Belov A.A., Kalitkin N.N., “Ekonomichnye metody chislennogo integrirovaniya zadachi Koshi dlya zhestkikh sistem ODU”, Diff. uravneniya, 55:7 (2019), 907–918 | DOI | Zbl
[8] Rosenbrock H.H., “Some general implicit processes for the numerical solution of differential equations”, Computer J., 5:4 (1963), 329–330 | DOI | MR | Zbl
[9] Poshivailo I.P., Zhestkie i plokho obuslovlennye nelineinye modeli i metody ikh rascheta, Diss. ...kand. fiz.-mat. nauk: 05.13.18, M., 2015
[10] Shalashilin V.I., Kuznetsov E.B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, Editorial URSS, M., 1999 | MR
[11] Belov A.A., Kalitkin N.N., Poshivailo I.P., “Geometricheski-adaptivnye setki dlya zhestkikh zadach Koshi”, DAN, 466:3 (2016), 276–281 | Zbl