Parabolic equations with changing direction of time
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 82-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem about the behavior of Cauchy-type integrals at the endpoints of the integration contour and at discontinuity points of the density is stated, and its application to boundary value problems for $2n$-order parabolic equations with a changing direction of time are described. The theory of singular equations, along with the smoothness of the initial data, makes it possible to specify necessary and sufficient conditions for the solution to belong to Hölder spaces. Note that, in the case $n=3$, the smoothness of the initial data and the solvability conditions imply that the solution belongs to smoother spaces near the ends with respect to the time variable.
Keywords: Cauchy-type integral, parabolic equations with changing direction of time, bonding gluing condition, Hölder space, singular integral equation.
@article{DANMA_2020_491_a16,
     author = {S. V. Popov},
     title = {Parabolic equations with changing direction of time},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {82--85},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a16/}
}
TY  - JOUR
AU  - S. V. Popov
TI  - Parabolic equations with changing direction of time
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 82
EP  - 85
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a16/
LA  - ru
ID  - DANMA_2020_491_a16
ER  - 
%0 Journal Article
%A S. V. Popov
%T Parabolic equations with changing direction of time
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 82-85
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a16/
%G ru
%F DANMA_2020_491_a16
S. V. Popov. Parabolic equations with changing direction of time. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 82-85. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a16/

[1] Gakhov F.D., Kraevye zadachi, Nauka, M., 1977, 640 pp.

[2] Muskhelishvili N.I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 512 pp.

[3] Tersenov S.A., Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Nauka, Novosibirsk, 1985, 105 pp.

[4] Monakhov V.N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977, 424 pp. | MR

[5] Vekua N.P., Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1968, 380 pp.

[6] Duduchava R.V., “O singulyarnykh integralnykh operatorakh v prostranstve Geldera s vesom”, DAN SSSR, 191:1 (1970), 16–19 | Zbl

[7] Soldatov A.P., Odnomepnye singulyapnye opepatopy i kpaevye zadachi teopii funktsii, Vyssh. shk., M., 1991, 266 pp.

[8] Popov S.V., “O gladkosti reshenii parabolicheskikh uravnenii s menyayuschimsya napravleniem evolyutsii”, DAN, 400:1 (2005), 29–31 | MR

[9] Popov S.V., Razreshimost kraevykh zadach dlya parabolicheskogo uravneniya s menyayuschimsya napravleniem vremeni vysokogo poryadka, Dep. v VINITI 07.12.88, 8646-B88, Red. zhurn. “Sib. mat. zhurnal”, Novosibirsk, 1988, 56 pp.

[10] Popov S.V., Potapova S.V., “Gelderovskie klassy reshenii $2n$-parabolicheskikh uravnenii s menyayuschimsya napravleniem evolyutsii”, DAN, 424:5 (2009), 594–596 | Zbl

[11] Popov S.V., “Gelderovskie klassy reshenii parabolicheskikh uravnenii chetvertogo poryadka s menyayuschimsya napravleniem vremeni s peremennymi usloviyami skleivaniya”, Matem. zametki SVFU, 21:2 (82) (2014), 81–93 | Zbl

[12] Cattabriga L., “Problemi al contorno per equazioni paraboliche di ordine $2n$”, Rend. Sem. Mat. Univ. Padova, 28:2 (1958), 376–401 | MR | Zbl

[13] Cattabriga L., “Equazioni paraboliche in due variabili. I; II”, Rend. sem. fac. sc. Univ. Cagliari, 31:1-2 (1961), 48–79 ; Rend. sem. fac. sc. Univ. Cagliari, 32:3–4 (1962), 254–267 | MR | Zbl | MR | Zbl