Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2020_491_a15, author = {M. V. Platonova and S. V. Tsykin}, title = {Probabilistic approximation of the evolution operator $e^{itH}$, where $H=\dfrac{(-1)^md^{2m}}{(2m)!dx^{2m}}$}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {78--81}, publisher = {mathdoc}, volume = {491}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a15/} }
TY - JOUR AU - M. V. Platonova AU - S. V. Tsykin TI - Probabilistic approximation of the evolution operator $e^{itH}$, where $H=\dfrac{(-1)^md^{2m}}{(2m)!dx^{2m}}$ JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 78 EP - 81 VL - 491 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a15/ LA - ru ID - DANMA_2020_491_a15 ER -
%0 Journal Article %A M. V. Platonova %A S. V. Tsykin %T Probabilistic approximation of the evolution operator $e^{itH}$, where $H=\dfrac{(-1)^md^{2m}}{(2m)!dx^{2m}}$ %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 78-81 %V 491 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a15/ %G ru %F DANMA_2020_491_a15
M. V. Platonova; S. V. Tsykin. Probabilistic approximation of the evolution operator $e^{itH}$, where $H=\dfrac{(-1)^md^{2m}}{(2m)!dx^{2m}}$. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 78-81. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a15/