Minimal self-similar Peano curve of genus 5$\times$5
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 68-72

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a plane regular fractal Peano curve with a Euclidean square-to-line ratio ($L_2$-locality) of 5$\frac{43}{73}$, which is minimal among all known curves of this class. The presented curve has a fractal genus of 25. Performed calculations allow us to state that all the other regular curves with a fractal genus not exceeding 36 have a strictly greater square-to-line ratio.
Keywords: space-filling curves, Peano curves, square-to-line ratio, regular fractal curves.
@article{DANMA_2020_491_a13,
     author = {Yu. V. Malykhin and E. V. Shchepin},
     title = {Minimal self-similar {Peano} curve of genus 5$\times$5},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {68--72},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a13/}
}
TY  - JOUR
AU  - Yu. V. Malykhin
AU  - E. V. Shchepin
TI  - Minimal self-similar Peano curve of genus 5$\times$5
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 68
EP  - 72
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a13/
LA  - ru
ID  - DANMA_2020_491_a13
ER  - 
%0 Journal Article
%A Yu. V. Malykhin
%A E. V. Shchepin
%T Minimal self-similar Peano curve of genus 5$\times$5
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 68-72
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a13/
%G ru
%F DANMA_2020_491_a13
Yu. V. Malykhin; E. V. Shchepin. Minimal self-similar Peano curve of genus 5$\times$5. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 68-72. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a13/