Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2020_491_a13, author = {Yu. V. Malykhin and E. V. Shchepin}, title = {Minimal self-similar {Peano} curve of genus 5$\times$5}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {68--72}, publisher = {mathdoc}, volume = {491}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a13/} }
TY - JOUR AU - Yu. V. Malykhin AU - E. V. Shchepin TI - Minimal self-similar Peano curve of genus 5$\times$5 JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 68 EP - 72 VL - 491 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a13/ LA - ru ID - DANMA_2020_491_a13 ER -
%0 Journal Article %A Yu. V. Malykhin %A E. V. Shchepin %T Minimal self-similar Peano curve of genus 5$\times$5 %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 68-72 %V 491 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a13/ %G ru %F DANMA_2020_491_a13
Yu. V. Malykhin; E. V. Shchepin. Minimal self-similar Peano curve of genus 5$\times$5. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 68-72. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a13/
[1] Schepin E.V., “O fraktalnykh krivykh Peano”, Geometricheskaya topologiya i teoriya mnozhestv, Sb. statei. K 100-letiyu so dnya rozhdeniya professora Lyudmily Vsevolodovny Keldysh, Tr. MIAN, 247, Nauka, M., 2004, 294–303 | Zbl
[2] Bader M., Space-Filling Curves. An Introduction with Applications in Scientific Computing, Springer-Verlag, B.–Heidelberg, 2013 | MR | Zbl
[3] Haverkort H., van Walderveen F., “Locality and bounding-box quality of two dimensional space-filling curves”, Computational Geometry, Theory and Applications, 43:2 (2010), 131–147 ; (2008), arXiv: 0806.4787v2 [cs.CG] | DOI | MR | Zbl | MR
[4] Bauman K.E., “Koeffitsient rastyazheniya krivoi Peano-Gilberta”, Matem. zametki, 80:5 (2006), 643–656 | DOI | MR | Zbl
[5] Bauman K.E., Schepin E.V., “Minimalnaya krivaya Peano”, Geometriya, topologiya i matematicheskaya fizika. I, Sb. statei. K 70-letiyu so dnya rozhdeniya akademika Sergeya Petrovicha Novikova, Tr. MIAN, 263, MAIK, M., 2008, 251–271 | MR
[6] Bauman K.E., “Odnostoronnie krivye Peano fraktalnogo roda 9”, Tr. MIAN, 275, 2011, 55–67 | Zbl
[7] Bauman K.E., “Otsenka snizu kvadratno-lineinogo otnosheniya dlya pravilnykh krivykh Peano”, Diskretnaya matematika, 80:3 (2013), 135–142
[8] \href{https://github.com/jura05/peano}f{https://github.com/jura05/peano}
[9] Biere A., Heule M., van Maaren H., Handbook of Satisfiability, IOS Press, 2009 | Zbl
[10] Audemard G., Lagniez J.-M., Simon L., “Improving Glucose for Incremental SAT Solving with Assumption: Application to MUS Extraction”, Proc. SAT, 2013 https://www.labri.fr/perso/lsimon/glucose/ | MR | Zbl
[11] https://pysathq.github.io/
[12] Shalyga D.K., “O tochnom vychislenii kubo-lineinogo otnosheniya krivykh Peano”, Prepr. IPM im. M.V. Keldysha, 2014, 088, 13 pp.
[13] Haverkort H., How many three-dimensional Hilbert curves are there?, 2017, arXiv: 1610.00155v2 [cs.CG] | MR
[14] Korneev A.A., Schepin E.V., “$L_\infty$-lokalnost trekhmernykh krivykh Peano”, Tr. MIAN, 302, MAIK, M., 2018, 1–34