Coarea formula for functions on 2-step Carnot groups with sub-Lorentzian structure
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 61-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $C^1$-functions defined on two-step Carnot groups with a sub-Lorentzian structure defined by one horizontal direction with a negative squared length along it, and prove a nonholonomic coarea formula. A result of interest in itself concerns the correctness of the problem statement, namely, the level sets have to be spacelike.
Keywords: two-step Carnot group, sub-Lorentzian structure, level set, sub-Lorentzian measure, coarea formula.
@article{DANMA_2020_491_a11,
     author = {M. B. Karmanova},
     title = {Coarea formula for functions on 2-step {Carnot} groups with {sub-Lorentzian} structure},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {61--64},
     publisher = {mathdoc},
     volume = {491},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a11/}
}
TY  - JOUR
AU  - M. B. Karmanova
TI  - Coarea formula for functions on 2-step Carnot groups with sub-Lorentzian structure
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 61
EP  - 64
VL  - 491
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a11/
LA  - ru
ID  - DANMA_2020_491_a11
ER  - 
%0 Journal Article
%A M. B. Karmanova
%T Coarea formula for functions on 2-step Carnot groups with sub-Lorentzian structure
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 61-64
%V 491
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a11/
%G ru
%F DANMA_2020_491_a11
M. B. Karmanova. Coarea formula for functions on 2-step Carnot groups with sub-Lorentzian structure. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 61-64. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a11/

[1] Miklyukov V.M., Klyachin A.A., Klyachin V.A., Maksimalnye poverkhnosti v prostranstve-vremeni Minkovskogo http://www.uchimsya.info/maxsurf.pdf

[2] Berestovskii V.N., Gichev V.M., Algebra i analiz, 11:4 (1999), 1–34 | MR | Zbl

[3] Grochowski M., J. Dyn. Control Syst., 12:2 (2006), 145–160 | DOI | MR | Zbl

[4] Korolko A., Markina I., Complex Anal. Oper. Theory, 4:3 (2010), 589–618 | DOI | MR | Zbl

[5] Krym V.R., Petrov N.N., Vestn. S.-Peterb. un-ta. Ser. 1, 2008, no. 3, 68–80 | Zbl

[6] Folland G.B., Stein E.M., Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1982 | MR | Zbl

[7] Karmanova M.B., Sib. mat. zhurn., 58:2 (2017), 232–254 | MR | Zbl

[8] Pansu P., Ann. Math., 129 (1989), 1–60 | DOI | MR | Zbl

[9] Vodopyanov S., Contemporary Mathematics, 424, Amer. Math. Soc., Providence, RI, 2007, 247–301 | DOI | MR | Zbl

[10] Kapmanova M.B., DAH, 474:2 (2017), 151–154

[11] Karmanova M., Vodopyanov S., Acta Applicandae Mathematicae, 128:1 (2013), 67–111 | DOI | MR | Zbl

[12] Karmanova M.B., Izv. RAN. Ser. mat., 84:1 (2020), 60–104 | DOI | MR | Zbl