Coarea formula for functions on 2-step Carnot groups with sub-Lorentzian structure
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 61-64
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider $C^1$-functions defined on two-step Carnot groups with a sub-Lorentzian structure defined by one horizontal direction with a negative squared length along it, and prove a nonholonomic coarea formula. A result of interest in itself concerns the correctness of the problem statement, namely, the level sets have to be spacelike.
Keywords:
two-step Carnot group, sub-Lorentzian structure, level set, sub-Lorentzian measure, coarea formula.
@article{DANMA_2020_491_a11,
author = {M. B. Karmanova},
title = {Coarea formula for functions on 2-step {Carnot} groups with {sub-Lorentzian} structure},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {61--64},
publisher = {mathdoc},
volume = {491},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a11/}
}
TY - JOUR AU - M. B. Karmanova TI - Coarea formula for functions on 2-step Carnot groups with sub-Lorentzian structure JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 61 EP - 64 VL - 491 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a11/ LA - ru ID - DANMA_2020_491_a11 ER -
%0 Journal Article %A M. B. Karmanova %T Coarea formula for functions on 2-step Carnot groups with sub-Lorentzian structure %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 61-64 %V 491 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a11/ %G ru %F DANMA_2020_491_a11
M. B. Karmanova. Coarea formula for functions on 2-step Carnot groups with sub-Lorentzian structure. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 61-64. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a11/