Attractors of an autonomous model of nonlinear viscous fluid
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 57-60
Voir la notice de l'article provenant de la source Math-Net.Ru
For an autonomous model of the motion of a nonlinear viscous fluid, we study the limiting behavior of its weak solutions as time tends to infinity. Namely, the existence of weak solutions on the positive half-axis is established, the trajectory space corresponding to the solutions of this model is determined, and the existence of a minimum trajectory attractor and, then, a global attractor in the phase space is proved using the theory of trajectory spaces. Thus, it turns out that whatever the initial state of the system describing the model is, it is “forgotten” over time and the global attractor is infinitely approached.
Keywords:
attractors, trajectory space, nonlinear viscous fluid.
@article{DANMA_2020_491_a10,
author = {V. G. Zvyagin and M. V. Kaznacheev},
title = {Attractors of an autonomous model of nonlinear viscous fluid},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {57--60},
publisher = {mathdoc},
volume = {491},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_491_a10/}
}
TY - JOUR AU - V. G. Zvyagin AU - M. V. Kaznacheev TI - Attractors of an autonomous model of nonlinear viscous fluid JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 57 EP - 60 VL - 491 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_491_a10/ LA - ru ID - DANMA_2020_491_a10 ER -
%0 Journal Article %A V. G. Zvyagin %A M. V. Kaznacheev %T Attractors of an autonomous model of nonlinear viscous fluid %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 57-60 %V 491 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_491_a10/ %G ru %F DANMA_2020_491_a10
V. G. Zvyagin; M. V. Kaznacheev. Attractors of an autonomous model of nonlinear viscous fluid. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 491 (2020), pp. 57-60. http://geodesic.mathdoc.fr/item/DANMA_2020_491_a10/