Stability of numerical methods for solving second-order hyperbolic equations with a small parameter
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 35-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a symmetric three-level (in time) method with a weight and a symmetric vector two-level method for solving the initial-boundary value problem for a second-order hyperbolic equation with a small parameter $\tau>0$ multiplying the highest time derivative, where the hyperbolic equation is a perturbation of the corresponding parabolic equation. It is proved that the solutions are uniformly stable in $\tau$ and time in two norms with respect to the initial data and the right-hand side of the equation. Additionally, the case where $\tau$ also multiplies the elliptic part of the equation is covered. The spacial discretization can be performed using the finite-difference or finite element method.
Keywords: second-order hyperbolic equations, small parameter, three- and two-level methods, uniform stability in small parameter and time.
@article{DANMA_2020_490_a7,
     author = {A. A. Zlotnik and B. N. Chetverushkin},
     title = {Stability of numerical methods for solving second-order hyperbolic equations with a small parameter},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {35--41},
     publisher = {mathdoc},
     volume = {490},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_490_a7/}
}
TY  - JOUR
AU  - A. A. Zlotnik
AU  - B. N. Chetverushkin
TI  - Stability of numerical methods for solving second-order hyperbolic equations with a small parameter
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 35
EP  - 41
VL  - 490
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_490_a7/
LA  - ru
ID  - DANMA_2020_490_a7
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%A B. N. Chetverushkin
%T Stability of numerical methods for solving second-order hyperbolic equations with a small parameter
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 35-41
%V 490
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_490_a7/
%G ru
%F DANMA_2020_490_a7
A. A. Zlotnik; B. N. Chetverushkin. Stability of numerical methods for solving second-order hyperbolic equations with a small parameter. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 35-41. http://geodesic.mathdoc.fr/item/DANMA_2020_490_a7/

[1] Chetverushkin B.N., Zlotnik A.A., Appl. Math. Lett., 83 (2018), 116–122 | DOI | MR

[2] Chetverushkin B.N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004

[3] Zlotnik A.A., Chetverushkin B.N., ZhVMiMF, 48:3 (2008), 445–472 | MR | Zbl

[4] Chetverushkin B.N., Matem. modelirovanie, 30:2 (2018), 81–98 | Zbl

[5] Shashkov A.G., Bubnov V.A., Yanovskii S.Yu., Volnovye yavleniya teploprovodnosti, 2-e izd., Editorial URSS, M., 2004

[6] Zlotnik A.A., Vychisl. protsessy i sistemy, 8, ed. G.I. Marchuk, Nauka, M., 1991, 116–167

[7] Čiegis R., Mirinavičius A., Cent. Eur. J. Math., 9:5 (2011), 1164–1170 | DOI | MR

[8] Chetverushkin B.N., Gulin A.V., DAN, 446:5 (2012), 501–503 | Zbl

[9] Samarskii A.A., Teoriya raznostnykh skhem, Nauka, M., 1977

[10] Zlotnik A.A., Vvedenie v teoriyu raznostnykh skhem, Izd. dom MEI, M., 2012