Stability of numerical methods for solving second-order hyperbolic equations with a small parameter
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 35-41
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a symmetric three-level (in time) method with a weight and a symmetric vector two-level method for solving the initial-boundary value problem for a second-order hyperbolic equation with a small parameter $\tau>0$ multiplying the highest time derivative, where the hyperbolic equation is a perturbation of the corresponding parabolic equation. It is proved that the solutions are uniformly stable in $\tau$ and time in two norms with respect to the initial data and the right-hand side of the equation. Additionally, the case where $\tau$ also multiplies the elliptic part of the equation is covered. The spacial discretization can be performed using the finite-difference or finite element method.
Keywords:
second-order hyperbolic equations, small parameter, three- and two-level methods, uniform stability in small parameter and time.
@article{DANMA_2020_490_a7,
author = {A. A. Zlotnik and B. N. Chetverushkin},
title = {Stability of numerical methods for solving second-order hyperbolic equations with a small parameter},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {35--41},
publisher = {mathdoc},
volume = {490},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_490_a7/}
}
TY - JOUR AU - A. A. Zlotnik AU - B. N. Chetverushkin TI - Stability of numerical methods for solving second-order hyperbolic equations with a small parameter JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 35 EP - 41 VL - 490 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_490_a7/ LA - ru ID - DANMA_2020_490_a7 ER -
%0 Journal Article %A A. A. Zlotnik %A B. N. Chetverushkin %T Stability of numerical methods for solving second-order hyperbolic equations with a small parameter %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 35-41 %V 490 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_490_a7/ %G ru %F DANMA_2020_490_a7
A. A. Zlotnik; B. N. Chetverushkin. Stability of numerical methods for solving second-order hyperbolic equations with a small parameter. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 35-41. http://geodesic.mathdoc.fr/item/DANMA_2020_490_a7/