On the action of the restricted Weyl group on the set of orbits a minimal parabolic subgroup
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 29-34
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct the action of the restricted Weyl group on the set of principal families of orbits of a minimal parabolic subgroup over an algebraically nonclosed field. Additionally, we relate this action to the action on a polarized cotangent bundle. These results generalize the corresponding results of Knop on the action of the Weyl group on the families of Borel orbits of maximal complexity and rank.
Keywords:
reductive group actions over algebraically nonclosed fields, Weyl group, orbits of minimal parabolic subgroup, cotangent bundle.
@article{DANMA_2020_490_a6,
author = {V. S. Zhgoon and F. Knop},
title = {On the action of the restricted {Weyl} group on the set of orbits a minimal parabolic subgroup},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {29--34},
publisher = {mathdoc},
volume = {490},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_490_a6/}
}
TY - JOUR AU - V. S. Zhgoon AU - F. Knop TI - On the action of the restricted Weyl group on the set of orbits a minimal parabolic subgroup JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 29 EP - 34 VL - 490 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_490_a6/ LA - ru ID - DANMA_2020_490_a6 ER -
%0 Journal Article %A V. S. Zhgoon %A F. Knop %T On the action of the restricted Weyl group on the set of orbits a minimal parabolic subgroup %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 29-34 %V 490 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_490_a6/ %G ru %F DANMA_2020_490_a6
V. S. Zhgoon; F. Knop. On the action of the restricted Weyl group on the set of orbits a minimal parabolic subgroup. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 29-34. http://geodesic.mathdoc.fr/item/DANMA_2020_490_a6/