Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2020_490_a6, author = {V. S. Zhgoon and F. Knop}, title = {On the action of the restricted {Weyl} group on the set of orbits a minimal parabolic subgroup}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {29--34}, publisher = {mathdoc}, volume = {490}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2020_490_a6/} }
TY - JOUR AU - V. S. Zhgoon AU - F. Knop TI - On the action of the restricted Weyl group on the set of orbits a minimal parabolic subgroup JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 29 EP - 34 VL - 490 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_490_a6/ LA - ru ID - DANMA_2020_490_a6 ER -
%0 Journal Article %A V. S. Zhgoon %A F. Knop %T On the action of the restricted Weyl group on the set of orbits a minimal parabolic subgroup %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 29-34 %V 490 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_490_a6/ %G ru %F DANMA_2020_490_a6
V. S. Zhgoon; F. Knop. On the action of the restricted Weyl group on the set of orbits a minimal parabolic subgroup. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 29-34. http://geodesic.mathdoc.fr/item/DANMA_2020_490_a6/
[1] Knop F., “On the set of orbits for a Borel subgroup”, Commentarii Mathematici Helvetici, 70:1 (1995), 285–309 | DOI | MR | Zbl
[2] Springer T.A., Linear algebraic groups, Springer Science Business Media, 2010 | MR
[3] Platonov V., Rapinchuk A., Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139, 1st Ed., Academic Press, 1993 | MR
[4] Zhgun V.S., Knop F., “Slozhnost deistviya reduktivnykh grupp nad algebraicheski nezamknutym polem i silnaya stabilnost deistvii na flagovykh mnogoobraziyakh”, DAN, 485:1 (2019), 22–26 | Zbl
[5] Vinberg E.B., “Slozhnost deistvii reduktivnykh grupp”, Funkts. analiz i ego pril., 20:1 (1986), 1–13 | MR | Zbl
[6] Knop F., Krotz B., Reductive group actions, 2016, arXiv: 1604.01005
[7] Brion M., “Quelques proprietes des espaces homogenes spheriques”, Manuscripta Math., 55:2 (1986), 191–198 | DOI | MR | Zbl
[8] Borel A., Tits J., “Groupes reductifs”, Inst. Hautes Etudes Sci. Publ. Math., 27 (1965), 55–150 | DOI | MR
[9] Kempf G., “Instability in invariant theory”, Ann. Math., 108:2 (1978), 299–316 | DOI | MR | Zbl
[10] Knop F., “The asymptotic behavior of invariant collective motion”, Inventiones mathematicae, 116:1 (1994), 309–328 | DOI | MR | Zbl
[11] Popov V.L., Vinberg E.B., “Invariant theory”, Algebraic geometry. IV, Encyclopedia Math. Sci., 55, Springer-Verlag, B.–Heidelberg–N.Y., 1994, 123–278 | DOI