Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2020_490_a19, author = {A.V.Lakeev}, title = {Necessary and sufficient conditions for internal stability of linear formations}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {85--90}, publisher = {mathdoc}, volume = {490}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2020_490_a19/} }
TY - JOUR AU - A.V.Lakeev TI - Necessary and sufficient conditions for internal stability of linear formations JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 85 EP - 90 VL - 490 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_490_a19/ LA - ru ID - DANMA_2020_490_a19 ER -
%0 Journal Article %A A.V.Lakeev %T Necessary and sufficient conditions for internal stability of linear formations %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 85-90 %V 490 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_490_a19/ %G ru %F DANMA_2020_490_a19
A.V.Lakeev. Necessary and sufficient conditions for internal stability of linear formations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 85-90. http://geodesic.mathdoc.fr/item/DANMA_2020_490_a19/
[1] Balch T., Arkin R.C., “Behavior-Based Formation Control for Multirobot”, IEEE Transactions on Robotics and Automation, 14:6 (1998), 926–939 | DOI
[2] Tanner H.G., Pappas G.J., “Formation input-to-state stability”, Proc. 15th IFAC World Congr. Autom. Control (Barcelona, 2002), 1512–1517
[3] Tanner H.G., Kumar V., Pappas G.J., “Stability properties of interconnected vehicles”, Proc. 15th International Symposium on Mathematical Theory of Networks and Systems (South Bend, Indiana, 2002), 4615-2, 1–12 (CD-ROM) | MR
[4] Tanner H.G., Pappas G.J., Kumar V., “Input-to-state Stability on Formation Graphs”, Proc. 41st IEEE Conference on Decision and Control (Las Vegas, NV, 2002), 2439–2444
[5] Tanner H.G., Pappas G.J., Kumar V., “Leader-to-formation stability”, IEEE Transactions on Robotics and Automation, 20:3 (2004), 443–455 | DOI
[6] Oh K.K., Park M.C., Ahn H.S., “A survey of multi-agent formation control”, Automatica, 53 (2015), 424–440 | DOI | MR | Zbl
[7] Lü J., Chen F., Chen G., “Nonsmooth leader-following formation control of nonidentical multi-agent systems with directed communication topologies”, Automatica, 64 (2016), 112–120 | DOI | MR | Zbl
[8] Sontag E.D., “Smooth stabilization implies coprime factorization”, IEEE Trans. Automat. Control, 34:4 (1989), 435–443 | DOI | MR | Zbl
[9] Sontag E.D., Wang Y., “On characterizations of the input-to-state stability property”, Systems Control Letters, 24:5 (1995), 351–359 | DOI | MR | Zbl
[10] Dashkovskii S.N., Efimov D.V., Contag E.D., “Ustoichivost ot vkhoda k sostoyaniyu i smezhnye svoistva sistem”, AiT, 2011, no. 8, 3–40 | MR
[11] Vasilev S.N., Kozlov R.I., Ulyanov S.A., “Analiz koordinatnykh i drugikh preobrazovanii modelei dinamicheskikh sistem metodom reduktsii”, Trudy instituta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 38–55
[12] Vasilev S.N., Kozlov R.I., Ulyanov S.A., “Ustoichivost mnogorezhimnykh formatsii”, DAN, 455:3 (2014), 269–274
[13] Ul'yanov S., Maksimkin N., “Formation path-following control of multi-AUV systems with adaptation of reference speed”, Mathematics in Engineering, Science and Aerospace, 10:3 (2019), 487–500 | MR
[14] Khalil X.K., Nelineinye sistemy, RKhD, M., 2009
[15] Kharari F., Teoriya grafov, Mir, M., 1973