Damping problem for a neutral control system with delay
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 81-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear control system described by a system of differential-difference equations of neutral type with several delays and variable matrix coefficients is considered. The relationship between the variational problem for a nonlocal functional describing the multidimensional control system with delays and the corresponding boundary value problem for the system of differential-difference equations is established. The existence and uniqueness of a generalized solution to this boundary value problem are proved.
Keywords: control system with delay, differential-difference equations, generalized solutions.
@article{DANMA_2020_490_a18,
     author = {A. S. Adkhamova and A. L. Skubachevskii},
     title = {Damping problem for a neutral control system with delay},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {81--84},
     publisher = {mathdoc},
     volume = {490},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_490_a18/}
}
TY  - JOUR
AU  - A. S. Adkhamova
AU  - A. L. Skubachevskii
TI  - Damping problem for a neutral control system with delay
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 81
EP  - 84
VL  - 490
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_490_a18/
LA  - ru
ID  - DANMA_2020_490_a18
ER  - 
%0 Journal Article
%A A. S. Adkhamova
%A A. L. Skubachevskii
%T Damping problem for a neutral control system with delay
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 81-84
%V 490
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_490_a18/
%G ru
%F DANMA_2020_490_a18
A. S. Adkhamova; A. L. Skubachevskii. Damping problem for a neutral control system with delay. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 81-84. http://geodesic.mathdoc.fr/item/DANMA_2020_490_a18/

[1] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[2] Leonov D.D., “K zadache ob uspokoenii sistemy upravleniya s posledeistviem”, Sovremennaya matematika. Fundamentalnye napravleniya, 37, 2010, 28–37

[3] Osipov Yu.S., “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Differents. uravneniya, 1:5 (1965), 605–618 | Zbl

[4] Skubachevskii A.L., “K zadache ob uspokoenii sistemy upravleniya s posledeistviem”, DAN, 335:2 (1994), 157–160 | Zbl

[5] Adkhamova A.S., Skubachevskii A.L., “Damping Problem for Multidimensional Control System with Delays”, Distributed Computer and Communication Networks, 678, Switzerland, 2016, 612–623 | DOI | Zbl

[6] Banks H.T., Kent G.A., “Control of Functional Differential Equations of Retarded and Neutral Type to Target Sets in Function Space”, SIAM J. Control, 10:4 (1972), 567–593 | DOI | MR | Zbl

[7] Halanay A., “Optimal Controls for Systems with Time Lag”, SIAM J. Control, 6 (1968), 213–234 | MR

[8] Kent G.A., “A Maximum Principle for Optimal Control Problems with Neutral Functional Differential Systems”, Bull. Amer. Math. Soc., 77:4 (1971), 565–570 | DOI | MR | Zbl

[9] Skubachevskii A.L., Elliptic Functional Differential Equations and Applications, Operator Theory: Advances and Applications, 91, Birkhauser, Basel–Boston–Berlin, 1997 | MR | Zbl