Absence of bottlenecks in a neural network determines its generic functional properties
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 74-77

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that an artificial neural network with smooth activation functions and without bottlenecks is a Morse function for almost all, with respect to the Lebesgue measure, sets of weights.
Keywords: neural network, Morse function.
@article{DANMA_2020_490_a16,
     author = {S. V. Kurochkin},
     title = {Absence of bottlenecks in a neural network determines its generic functional properties},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {74--77},
     publisher = {mathdoc},
     volume = {490},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_490_a16/}
}
TY  - JOUR
AU  - S. V. Kurochkin
TI  - Absence of bottlenecks in a neural network determines its generic functional properties
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 74
EP  - 77
VL  - 490
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_490_a16/
LA  - ru
ID  - DANMA_2020_490_a16
ER  - 
%0 Journal Article
%A S. V. Kurochkin
%T Absence of bottlenecks in a neural network determines its generic functional properties
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 74-77
%V 490
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2020_490_a16/
%G ru
%F DANMA_2020_490_a16
S. V. Kurochkin. Absence of bottlenecks in a neural network determines its generic functional properties. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 74-77. http://geodesic.mathdoc.fr/item/DANMA_2020_490_a16/