Absence of bottlenecks in a neural network determines its generic functional properties
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 74-77
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that an artificial neural network with smooth activation functions and without bottlenecks is a Morse function for almost all, with respect to the Lebesgue measure, sets of weights.
Keywords:
neural network, Morse function.
@article{DANMA_2020_490_a16,
author = {S. V. Kurochkin},
title = {Absence of bottlenecks in a neural network determines its generic functional properties},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {74--77},
publisher = {mathdoc},
volume = {490},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_490_a16/}
}
TY - JOUR AU - S. V. Kurochkin TI - Absence of bottlenecks in a neural network determines its generic functional properties JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 74 EP - 77 VL - 490 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2020_490_a16/ LA - ru ID - DANMA_2020_490_a16 ER -
%0 Journal Article %A S. V. Kurochkin %T Absence of bottlenecks in a neural network determines its generic functional properties %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 74-77 %V 490 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2020_490_a16/ %G ru %F DANMA_2020_490_a16
S. V. Kurochkin. Absence of bottlenecks in a neural network determines its generic functional properties. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 490 (2020), pp. 74-77. http://geodesic.mathdoc.fr/item/DANMA_2020_490_a16/