What separable Fröbenius monoïdal functors preserve?
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 1, article no. 2, 22 p.

Voir la notice de l'article provenant de la source Numdam

@article{CTGDC_2010__51_1_29_0,
     author = {McCurdy, Micah and Street, Ross},
     title = {What separable {Fr\"obenius} mono{\"\i}dal functors preserve?},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     eid = {2},
     pages = {29--50},
     publisher = {Andr\'ee CHARLES EHRESMANN},
     volume = {51},
     number = {1},
     year = {2010},
     mrnumber = {2650578},
     zbl = {1214.18008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CTGDC_2010__51_1_29_0/}
}
TY  - JOUR
AU  - McCurdy, Micah
AU  - Street, Ross
TI  - What separable Fröbenius monoïdal functors preserve?
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2010
SP  - 29
EP  - 50
VL  - 51
IS  - 1
PB  - Andrée CHARLES EHRESMANN
UR  - http://geodesic.mathdoc.fr/item/CTGDC_2010__51_1_29_0/
LA  - en
ID  - CTGDC_2010__51_1_29_0
ER  - 
%0 Journal Article
%A McCurdy, Micah
%A Street, Ross
%T What separable Fröbenius monoïdal functors preserve?
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2010
%P 29-50
%V 51
%N 1
%I Andrée CHARLES EHRESMANN
%U http://geodesic.mathdoc.fr/item/CTGDC_2010__51_1_29_0/
%G en
%F CTGDC_2010__51_1_29_0
McCurdy, Micah; Street, Ross. What separable Fröbenius monoïdal functors preserve?. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 1, article  no. 2, 22 p. http://geodesic.mathdoc.fr/item/CTGDC_2010__51_1_29_0/

[1] M. Aguiar and S. Mahajan, Monoidal functors, species and Hopf algebras, preliminary copy available at http://www.math.tamu.edu/\~maguiar/a.pdf | MR | Zbl

[2] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, Weak Hopf algebras and weak Yang-Baxter operators, Journal of Algebra 320 (2008), 2101-2143. | MR | Zbl

[3] J. M. Beck, Distributive laws, Lecture Notes in Mathematics (Springer, Berlin) 80 (1969), 119-140. www.tac.mta.ca/tac/reprints/articles/18/tr18abs.html

[4] J. R. Cockett and R. A. Seely, Linearly distributive functors, Journal of Pure and Applied Algebra 143 (1999), 155-203. | MR | Zbl

[5] B. J. Day and C. A. Pastro, Note on Frobenius monoidal functors, New York Journal of Mathematics 14 (2008), 733-742. http://arxiv.org/pdf/0801.4107v2 | MR | EuDML | Zbl

[6] A. Fleury and C. Retoré, The mix rule, Mathematical Structures in Computer Science 4 (1994), 273-285. | MR | Zbl

[7] J.Y. Girard, Linear Logic, Theoretical Computer Science 50 (1987), 1-102. | MR | Zbl

[8] A. Joyal and R. Street, Braided tensor categories, Advances in Mathematics 102 (1993), 20-78. MR 94m: 18008 | MR | Zbl

[9] A. Joyal and R. Street, The geometry of tensor calculus I, Advances in Mathematics 88 (1991), 55-112. | MR | Zbl

[10] Kock J. Frobenius algebras and 2D topological quantum field theories. CUP, (2004) | MR | Zbl

[11] A. Lauda, Frobenius algebras and planar open string topological field theories, (2005) http://arXiv.org/pdf/math/0508349

[12] C. Pastro and R. Street, Weak Hopf monoids in braided monoidal categories, Algebra and Number Theory 3 (2009), 149-207. http://pj m.math.berkeley.edu/ant/2009/3-2/index.xhtml | MR | Zbl

[13] R. Street. Weak distributive laws, Theory and Applications of Categories 22(12) (2009), 313-320. http://www.tac.mta.ca/tac/volumes/22/12/22-12.pdf | MR | EuDML | Zbl

[14] K. Szlachányi, Finite quantum groupoids and inclusions of finite type, Fields Institute Communications 30 (2001), 393-407. | MR | Zbl

[15] K. Szlachányi, Adjointable monoidal functors and quantum groupoids, Lecture Notes in Pure and Applied Mathematics 239 (2005), 291-307. http://arXiv.org/pdf/math/0301253 | MR | Zbl