Some type of semisymmetry on two classes of almost Kenmotsu manifolds
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 457-471.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The object of the present paper is to study some types of semisymmetry conditions on two classes of almost Kenmotsu manifolds. It is shown that a $(k,\mu )$-almost Kenmotsu manifold satisfying the curvature condition $Q\cdot R = 0$ is locally isometric to the hyperbolic space $\mathbb {H}^{2n+1}(-1)$. Also in $(k,\mu )$-almost Kenmotsu manifolds the following conditions: (1) local symmetry $(\nabla R = 0)$, (2) semisymmetry $(R\cdot R = 0)$, (3) $Q(S,R) = 0$, (4) $R\cdot R = Q(S,R)$, (5) locally isometric to the hyperbolic space $\mathbb {H}^{2n+1}(-1)$ are equivalent. Further, it is proved that a $(k,\mu )'$-almost Kenmotsu manifold satisfying $Q\cdot R = 0$ is locally isometric to $\mathbb {H}^{n+1}(-4) \times \mathbb {R}^n$ and a $(k,\mu )'$\HH almost Kenmotsu manifold satisfying any one of the curvature conditions $Q(S,R) = 0$ or $R\cdot R = Q(S,R)$ is either an Einstein manifold or locally isometric to $\mathbb {H}^{n+1}(-4) \times \mathbb {R}^n$. Finally, an illustrative example is presented.
Classification : 53C25, 53D15
Keywords: Almost Kenmotsu manifolds; Semisymmetry; Pseudosymmetry; Hyperbolic space.
@article{COMIM_2021__29_3_a9,
     author = {Dey, Dibakar and Majhi, Pradip},
     title = {Some type of semisymmetry on two classes of almost {Kenmotsu} manifolds},
     journal = {Communications in Mathematics},
     pages = {457--471},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2021},
     mrnumber = {4355422},
     zbl = {07484380},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a9/}
}
TY  - JOUR
AU  - Dey, Dibakar
AU  - Majhi, Pradip
TI  - Some type of semisymmetry on two classes of almost Kenmotsu manifolds
JO  - Communications in Mathematics
PY  - 2021
SP  - 457
EP  - 471
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a9/
LA  - en
ID  - COMIM_2021__29_3_a9
ER  - 
%0 Journal Article
%A Dey, Dibakar
%A Majhi, Pradip
%T Some type of semisymmetry on two classes of almost Kenmotsu manifolds
%J Communications in Mathematics
%D 2021
%P 457-471
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a9/
%G en
%F COMIM_2021__29_3_a9
Dey, Dibakar; Majhi, Pradip. Some type of semisymmetry on two classes of almost Kenmotsu manifolds. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 457-471. http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a9/