A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 443-455.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-biharmonic operators \begin {gather*} \Delta _{p(x)}^2 u-\Delta _{p(x)}u=\lambda w(x)|u|^{q(x)-2}u \quad \text {in } \Omega ,\\ u\in W^{2,p(\cdot )}(\Omega )\cap W_0^{1,p(\cdot )}(\Omega )\,, \end {gather*} is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces $L^{p(\cdot )}(\Omega )$ and $W^{m,p(\cdot )}(\Omega )$.
Classification : 35J35, 47J10, 58E05
Keywords: Palais-Smale condition; Ljusternick-Schnirelmann; Variational methods; $p(\cdot )$-biharmonic operator; $p(\cdot )$-harmonic operator; Variable exponent.
@article{COMIM_2021__29_3_a8,
     author = {Laghzal, Mohamed and Khalil, Abdelouahed El and Touzani, Abdelfattah},
     title = {A {Weighted} {Eigenvalue} {Problems} {Driven} by both $p(\cdot )${-Harmonic} and $p(\cdot )${-Biharmonic} {Operators}},
     journal = {Communications in Mathematics},
     pages = {443--455},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2021},
     mrnumber = {4355414},
     zbl = {07484379},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a8/}
}
TY  - JOUR
AU  - Laghzal, Mohamed
AU  - Khalil, Abdelouahed El
AU  - Touzani, Abdelfattah
TI  - A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators
JO  - Communications in Mathematics
PY  - 2021
SP  - 443
EP  - 455
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a8/
LA  - en
ID  - COMIM_2021__29_3_a8
ER  - 
%0 Journal Article
%A Laghzal, Mohamed
%A Khalil, Abdelouahed El
%A Touzani, Abdelfattah
%T A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators
%J Communications in Mathematics
%D 2021
%P 443-455
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a8/
%G en
%F COMIM_2021__29_3_a8
Laghzal, Mohamed; Khalil, Abdelouahed El; Touzani, Abdelfattah. A Weighted Eigenvalue Problems Driven by both $p(\cdot )$-Harmonic and $p(\cdot )$-Biharmonic Operators. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 443-455. http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a8/