On the gaps between $q$-binomial coefficients
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 431-442
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this note, we estimate the distance between two $q$-nomial coefficients $\bigl \lvert \binom {n}{k}_q-\binom {n'}{k'}_q\bigr \rvert $, where $(n,k)\ne (n',k')$ and $q\ge 2$ is an integer.
@article{COMIM_2021__29_3_a7,
author = {Luca, Florian and Manganye, Sylvester},
title = {On the gaps between $q$-binomial coefficients},
journal = {Communications in Mathematics},
pages = {431--442},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {2021},
mrnumber = {4355413},
zbl = {07484378},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a7/}
}
Luca, Florian; Manganye, Sylvester. On the gaps between $q$-binomial coefficients. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 431-442. http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a7/