On the variation of certain fractional part sequences
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 407-430
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $b>a>0$. We prove the following asymptotic formula $$ \sum _{n\geqslant 0} \big \lvert \{x/(n+a)\}-\{x/(n+b)\}\big \rvert =\frac {2}{\pi }\zeta (3/2)\sqrt {cx}+O(c^{2/9}x^{4/9})\,, $$ with $c=b-a$, uniformly for $x \geqslant 40 c^{-5}(1+b)^{27/2}$.
Classification :
11N37
Keywords: Fractional part; Elementary methods; van der Corput estimates
Keywords: Fractional part; Elementary methods; van der Corput estimates
@article{COMIM_2021__29_3_a6,
author = {Balazard, Michel and Benferhat, Leila and Bouderbala, Mihoub},
title = {On the variation of certain fractional part sequences},
journal = {Communications in Mathematics},
pages = {407--430},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {2021},
mrnumber = {4355415},
zbl = {07484377},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a6/}
}
TY - JOUR AU - Balazard, Michel AU - Benferhat, Leila AU - Bouderbala, Mihoub TI - On the variation of certain fractional part sequences JO - Communications in Mathematics PY - 2021 SP - 407 EP - 430 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a6/ LA - en ID - COMIM_2021__29_3_a6 ER -
Balazard, Michel; Benferhat, Leila; Bouderbala, Mihoub. On the variation of certain fractional part sequences. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 407-430. http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a6/