G-tridiagonal majorization on $\textbf {M}_{n,m}$
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 395-405.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For $X,Y\in \textbf {M}_{n,m}$, it is said that $X$ is \emph {g-tridiagonal} majorized by $Y$ (and it is denoted by $X\prec _{gt}Y$) if there exists a tridiagonal g-doubly stochastic matrix $A$ such that $X=AY$. In this paper, the linear preservers and strong linear preservers of $\prec _{gt}$ are characterized on $\textbf {M}_{n,m}$.
Classification : 15A04, 15A21
Keywords: G-doubly stochastic matrix; gt-majorization; (strong) linear preserver; tridiagonal matrices.
@article{COMIM_2021__29_3_a5,
     author = {Mohammadhasani, Ahmad and Sayyari, Yamin and Sabzvari, Mahdi},
     title = {G-tridiagonal majorization on $\textbf  {M}_{n,m}$},
     journal = {Communications in Mathematics},
     pages = {395--405},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2021},
     mrnumber = {4355421},
     zbl = {07484376},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a5/}
}
TY  - JOUR
AU  - Mohammadhasani, Ahmad
AU  - Sayyari, Yamin
AU  - Sabzvari, Mahdi
TI  - G-tridiagonal majorization on $\textbf  {M}_{n,m}$
JO  - Communications in Mathematics
PY  - 2021
SP  - 395
EP  - 405
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a5/
LA  - en
ID  - COMIM_2021__29_3_a5
ER  - 
%0 Journal Article
%A Mohammadhasani, Ahmad
%A Sayyari, Yamin
%A Sabzvari, Mahdi
%T G-tridiagonal majorization on $\textbf  {M}_{n,m}$
%J Communications in Mathematics
%D 2021
%P 395-405
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a5/
%G en
%F COMIM_2021__29_3_a5
Mohammadhasani, Ahmad; Sayyari, Yamin; Sabzvari, Mahdi. G-tridiagonal majorization on $\textbf  {M}_{n,m}$. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 395-405. http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a5/