$(\phi , \varphi )$-derivations on semiprime rings and Banach algebras
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 371-383.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathcal{R} $ be a semiprime ring with unity $e$ and $\phi $, $\varphi $ be automorphisms of $\mathcal{R} $. In this paper it is shown that if $\mathcal{R} $ satisfies $$2\mathcal{D} (x^n) = \mathcal{D} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal{D} (x)+\mathcal{D} (x)\phi (x^{n-1}) + \varphi (x)\mathcal{D} (x^{n-1})$$ for all $x\in \mathcal{R} $ and some fixed integer $n\geq 2$, then $\mathcal{D} $ is an ($\phi $, $\varphi $)-derivation. Moreover, this result makes it possible to prove that if $\mathcal { R}$ admits an additive mappings $\mathcal{D} ,\mathcal{G} \colon \mathcal{R} \rightarrow \mathcal{R} $ satisfying the relations \begin {gather*}\nonumber 2\mathcal{D} (x^n) = \mathcal{D} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal{G} (x)+\mathcal{G} (x)\phi (x^{n-1}) + \varphi (x)\mathcal{G} (x^{n-1})\,, \\ 2\mathcal{G} (x^n) = \mathcal{G} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal{D} (x)+\mathcal{D} (x)\phi (x^{n-1}) + \varphi (x)\mathcal{D} (x^{n-1})\,, \end {gather*} for all $x\in \mathcal{R} $ and some fixed integer $n\geq 2$, then $\mathcal{D} $ and $\mathcal{G} $ are ($\phi $, $\varphi $)\HH derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras.
Classification : 16N60, 16W25, 46J10
Keywords: Prime ring; semiprime ring; Banach algebra; Jordan derivation; $(\phi, \varphi )$-derivation
@article{COMIM_2021__29_3_a3,
     author = {Wani, Bilal Ahmad},
     title = {$(\phi , \varphi )$-derivations on semiprime rings and {Banach} algebras},
     journal = {Communications in Mathematics},
     pages = {371--383},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2021},
     mrnumber = {4355419},
     zbl = {07484374},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a3/}
}
TY  - JOUR
AU  - Wani, Bilal Ahmad
TI  - $(\phi , \varphi )$-derivations on semiprime rings and Banach algebras
JO  - Communications in Mathematics
PY  - 2021
SP  - 371
EP  - 383
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a3/
LA  - en
ID  - COMIM_2021__29_3_a3
ER  - 
%0 Journal Article
%A Wani, Bilal Ahmad
%T $(\phi , \varphi )$-derivations on semiprime rings and Banach algebras
%J Communications in Mathematics
%D 2021
%P 371-383
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a3/
%G en
%F COMIM_2021__29_3_a3
Wani, Bilal Ahmad. $(\phi , \varphi )$-derivations on semiprime rings and Banach algebras. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 371-383. http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a3/