An integral transform and its application in the propagation of Lorentz-Gaussian beams
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 483-491
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The aim of the present note is to derive an integral transform $$I=\int _{0}^{\infty } x^{s+1} e^{-\beta x^{2}+\gamma x} M_{k, \nu }\left (2 \zeta x^{2}\right )J_{\mu }(\chi x) dx,$$ involving the product of the Whittaker function $M_{k, \nu }$ and the Bessel function of the first kind $J_{\mu }$ of order $\mu $. As a by-product, we also derive certain new integral transforms as particular cases for some special values of the parameters $k$ and $\nu $ of the Whittaker function. Eventually, we show the application of the integral in the propagation of hollow higher-order circular Lorentz-cosh-Gaussian beams through an ABCD optical system (see, for details \cite {Xu2019}, \cite {Collins1970}).
Classification :
33B15, 33C10, 33C15
Keywords: Integral transform; Bessel function; Whittaker function; Confluent hypergeometric function; Lorentz-Gaussian beams.
Keywords: Integral transform; Bessel function; Whittaker function; Confluent hypergeometric function; Lorentz-Gaussian beams.
@article{COMIM_2021__29_3_a11,
author = {Belafhal, A. and Halba, E.M. El and Usman, T.},
title = {An integral transform and its application in the propagation of {Lorentz-Gaussian} beams},
journal = {Communications in Mathematics},
pages = {483--491},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {2021},
mrnumber = {4355423},
zbl = {07484382},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a11/}
}
TY - JOUR AU - Belafhal, A. AU - Halba, E.M. El AU - Usman, T. TI - An integral transform and its application in the propagation of Lorentz-Gaussian beams JO - Communications in Mathematics PY - 2021 SP - 483 EP - 491 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a11/ LA - en ID - COMIM_2021__29_3_a11 ER -
%0 Journal Article %A Belafhal, A. %A Halba, E.M. El %A Usman, T. %T An integral transform and its application in the propagation of Lorentz-Gaussian beams %J Communications in Mathematics %D 2021 %P 483-491 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a11/ %G en %F COMIM_2021__29_3_a11
Belafhal, A.; Halba, E.M. El; Usman, T. An integral transform and its application in the propagation of Lorentz-Gaussian beams. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 483-491. http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a11/