An integral transform and its application in the propagation of Lorentz-Gaussian beams
Communications in Mathematics, Tome 29 (2021) no. 3, pp. 483-491.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The aim of the present note is to derive an integral transform $$I=\int _{0}^{\infty } x^{s+1} e^{-\beta x^{2}+\gamma x} M_{k, \nu }\left (2 \zeta x^{2}\right )J_{\mu }(\chi x) dx,$$ involving the product of the Whittaker function $M_{k, \nu }$ and the Bessel function of the first kind $J_{\mu }$ of order $\mu $. As a by-product, we also derive certain new integral transforms as particular cases for some special values of the parameters $k$ and $\nu $ of the Whittaker function. Eventually, we show the application of the integral in the propagation of hollow higher-order circular Lorentz-cosh-Gaussian beams through an ABCD optical system (see, for details \cite {Xu2019}, \cite {Collins1970}).
Classification : 33B15, 33C10, 33C15
Keywords: Integral transform; Bessel function; Whittaker function; Confluent hypergeometric function; Lorentz-Gaussian beams.
@article{COMIM_2021__29_3_a11,
     author = {Belafhal, A. and Halba, E.M. El and Usman, T.},
     title = {An integral transform and its application in the propagation of {Lorentz-Gaussian} beams},
     journal = {Communications in Mathematics},
     pages = {483--491},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2021},
     mrnumber = {4355423},
     zbl = {07484382},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a11/}
}
TY  - JOUR
AU  - Belafhal, A.
AU  - Halba, E.M. El
AU  - Usman, T.
TI  - An integral transform and its application in the propagation of Lorentz-Gaussian beams
JO  - Communications in Mathematics
PY  - 2021
SP  - 483
EP  - 491
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a11/
LA  - en
ID  - COMIM_2021__29_3_a11
ER  - 
%0 Journal Article
%A Belafhal, A.
%A Halba, E.M. El
%A Usman, T.
%T An integral transform and its application in the propagation of Lorentz-Gaussian beams
%J Communications in Mathematics
%D 2021
%P 483-491
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a11/
%G en
%F COMIM_2021__29_3_a11
Belafhal, A.; Halba, E.M. El; Usman, T. An integral transform and its application in the propagation of Lorentz-Gaussian beams. Communications in Mathematics, Tome 29 (2021) no. 3, pp. 483-491. http://geodesic.mathdoc.fr/item/COMIM_2021__29_3_a11/