Conservative algebras of $2$-dimensional algebras, III
Communications in Mathematics, Tome 29 (2021) no. 2, pp. 255-267
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In the present paper we prove that every local and $2$-local derivation on conservative algebras of $2$-dimensional algebras are derivations. Also, we prove that every local and $2$-local automorphism on conservative algebras of $2$-dimensional algebras are automorphisms.
Classification :
17A15, 17A30
Keywords: Conservative algebra; derivation; local derivation; $2$-local derivation; automorphism; local automorphism; $2$-local automorphism
Keywords: Conservative algebra; derivation; local derivation; $2$-local derivation; automorphism; local automorphism; $2$-local automorphism
@article{COMIM_2021__29_2_a7,
author = {Arzikulov, Farhodjon and Umrzaqov, Nodirbek},
title = {Conservative algebras of $2$-dimensional algebras, {III}},
journal = {Communications in Mathematics},
pages = {255--267},
publisher = {mathdoc},
volume = {29},
number = {2},
year = {2021},
mrnumber = {4285756},
zbl = {07426422},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a7/}
}
TY - JOUR AU - Arzikulov, Farhodjon AU - Umrzaqov, Nodirbek TI - Conservative algebras of $2$-dimensional algebras, III JO - Communications in Mathematics PY - 2021 SP - 255 EP - 267 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a7/ LA - en ID - COMIM_2021__29_2_a7 ER -
Arzikulov, Farhodjon; Umrzaqov, Nodirbek. Conservative algebras of $2$-dimensional algebras, III. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 255-267. http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a7/