Conservative algebras of $2$-dimensional algebras, III
Communications in Mathematics, Tome 29 (2021) no. 2, pp. 255-267.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the present paper we prove that every local and $2$-local derivation on conservative algebras of $2$-dimensional algebras are derivations. Also, we prove that every local and $2$-local automorphism on conservative algebras of $2$-dimensional algebras are automorphisms.
Classification : 17A15, 17A30
Keywords: Conservative algebra; derivation; local derivation; $2$-local derivation; automorphism; local automorphism; $2$-local automorphism
@article{COMIM_2021__29_2_a7,
     author = {Arzikulov, Farhodjon and Umrzaqov, Nodirbek},
     title = {Conservative algebras of $2$-dimensional algebras, {III}},
     journal = {Communications in Mathematics},
     pages = {255--267},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2021},
     mrnumber = {4285756},
     zbl = {07426422},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a7/}
}
TY  - JOUR
AU  - Arzikulov, Farhodjon
AU  - Umrzaqov, Nodirbek
TI  - Conservative algebras of $2$-dimensional algebras, III
JO  - Communications in Mathematics
PY  - 2021
SP  - 255
EP  - 267
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a7/
LA  - en
ID  - COMIM_2021__29_2_a7
ER  - 
%0 Journal Article
%A Arzikulov, Farhodjon
%A Umrzaqov, Nodirbek
%T Conservative algebras of $2$-dimensional algebras, III
%J Communications in Mathematics
%D 2021
%P 255-267
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a7/
%G en
%F COMIM_2021__29_2_a7
Arzikulov, Farhodjon; Umrzaqov, Nodirbek. Conservative algebras of $2$-dimensional algebras, III. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 255-267. http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a7/