Certain partitions on a set and their applications to different classes of graded algebras
Communications in Mathematics, Tome 29 (2021) no. 2, pp. 243-254.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $({\mathfrak A} , {\epsilon }_{u})$ and $({\mathfrak B} , {\epsilon }_{b})$ be two pointed sets. Given a family of three maps ${\mathcal F}=\{f_1\colon {{\mathfrak A} } \to {\mathfrak A} ; f_2\colon {{\mathfrak A} } \times {\mathfrak A} \to {\mathfrak A} ; f_3\colon {{\mathfrak A} } \times {\mathfrak A} \to {\mathfrak B} \}$, this family provides an adequate decomposition of ${\mathfrak A} \setminus \{ \epsilon _u \}$ as the orthogonal disjoint union of well-described ${\mathcal F}$-invariant subsets. This decomposition is applied to the structure theory of graded involutive algebras, graded quadratic algebras and graded weak $H^*$-algebras.
Classification : 03E75, 08A05, 16W50, 17A01, 17A45
Keywords: Set; application; graded algebra; involutive algebra; quadratic algebra; weak $H^*$-algebra; structure theory
@article{COMIM_2021__29_2_a6,
     author = {Mart{\'\i}n, Antonio J. Calder\'on and Dieme, Boubacar},
     title = {Certain partitions on a set and their applications to different classes of graded algebras},
     journal = {Communications in Mathematics},
     pages = {243--254},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2021},
     mrnumber = {4285754},
     zbl = {07426421},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a6/}
}
TY  - JOUR
AU  - Martín, Antonio J. Calderón
AU  - Dieme, Boubacar
TI  - Certain partitions on a set and their applications to different classes of graded algebras
JO  - Communications in Mathematics
PY  - 2021
SP  - 243
EP  - 254
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a6/
LA  - en
ID  - COMIM_2021__29_2_a6
ER  - 
%0 Journal Article
%A Martín, Antonio J. Calderón
%A Dieme, Boubacar
%T Certain partitions on a set and their applications to different classes of graded algebras
%J Communications in Mathematics
%D 2021
%P 243-254
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a6/
%G en
%F COMIM_2021__29_2_a6
Martín, Antonio J. Calderón; Dieme, Boubacar. Certain partitions on a set and their applications to different classes of graded algebras. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 243-254. http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a6/