Unified computational approach to nilpotent algebra classification problems
Communications in Mathematics, Tome 29 (2021) no. 2, pp. 215-226
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this article, we provide an algorithm with Wolfram Mathematica code that gives a unified computational power in classification of finite dimensional nilpotent algebras using Skjelbred-Sund method. To illustrate the code, we obtain new finite dimensional Moufang algebras.
Classification :
17A30, 68W30
Keywords: Algebra; Skjelbred-Sund classification; finite dimensional nilpotent algebra; Wolfram Mathematica; symbolic solver; algorithm
Keywords: Algebra; Skjelbred-Sund classification; finite dimensional nilpotent algebra; Wolfram Mathematica; symbolic solver; algorithm
@article{COMIM_2021__29_2_a4,
author = {Kadyrov, Shirali and Mashurov, Farukh},
title = {Unified computational approach to nilpotent algebra classification problems},
journal = {Communications in Mathematics},
pages = {215--226},
publisher = {mathdoc},
volume = {29},
number = {2},
year = {2021},
mrnumber = {4285752},
zbl = {07426419},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a4/}
}
TY - JOUR AU - Kadyrov, Shirali AU - Mashurov, Farukh TI - Unified computational approach to nilpotent algebra classification problems JO - Communications in Mathematics PY - 2021 SP - 215 EP - 226 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a4/ LA - en ID - COMIM_2021__29_2_a4 ER -
Kadyrov, Shirali; Mashurov, Farukh. Unified computational approach to nilpotent algebra classification problems. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 215-226. http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a4/