The image of multilinear polynomials evaluated on $3\times 3$ upper triangular matrices
Communications in Mathematics, Tome 29 (2021) no. 2, pp. 183-186.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We describe the images of multilinear polynomials of arbitrary degree evaluated on the $3\times 3$ upper triangular matrix algebra over an infinite field.
Classification : 16R10, 16S50
Keywords: multilinear polynomials; upper triangular matrices; Lvov-Kaplansky's conjecture
@article{COMIM_2021__29_2_a2,
     author = {Mello, Thiago Castilho de},
     title = {The image of multilinear polynomials evaluated on $3\times 3$ upper triangular matrices},
     journal = {Communications in Mathematics},
     pages = {183--186},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2021},
     mrnumber = {4285750},
     zbl = {07426417},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a2/}
}
TY  - JOUR
AU  - Mello, Thiago Castilho de
TI  - The image of multilinear polynomials evaluated on $3\times 3$ upper triangular matrices
JO  - Communications in Mathematics
PY  - 2021
SP  - 183
EP  - 186
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a2/
LA  - en
ID  - COMIM_2021__29_2_a2
ER  - 
%0 Journal Article
%A Mello, Thiago Castilho de
%T The image of multilinear polynomials evaluated on $3\times 3$ upper triangular matrices
%J Communications in Mathematics
%D 2021
%P 183-186
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a2/
%G en
%F COMIM_2021__29_2_a2
Mello, Thiago Castilho de. The image of multilinear polynomials evaluated on $3\times 3$ upper triangular matrices. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 183-186. http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a2/