Weak polynomial identities and their applications
Communications in Mathematics, Tome 29 (2021) no. 2, pp. 291-324.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be an associative algebra over a field $K$ generated by a vector subspace $V$. The polynomial $f(x_1,\ldots ,x_n)$ of the free associative algebra $K\langle x_1,x_2,\ldots \rangle $ is a weak polynomial identity for the pair $(R,V)$ if it vanishes in $R$ when evaluated on $V$. We survey results on weak polynomial identities and on their applications to polynomial identities and central polynomials of associative and close to them nonassociative algebras and on the finite basis problem. We also present results on weak polynomial identities of degree three.
Classification : 16R10, 16R30, 17B01, 17B20, 17C05, 17C20, 20C30
Keywords: weak polynomial identities; L-varieties; algebras with polynomial identities; central polynomials; finite basis property; Specht problem
@article{COMIM_2021__29_2_a10,
     author = {Drensky, Vesselin},
     title = {Weak polynomial identities and their applications},
     journal = {Communications in Mathematics},
     pages = {291--324},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2021},
     mrnumber = {4285755},
     zbl = {07426425},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a10/}
}
TY  - JOUR
AU  - Drensky, Vesselin
TI  - Weak polynomial identities and their applications
JO  - Communications in Mathematics
PY  - 2021
SP  - 291
EP  - 324
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a10/
LA  - en
ID  - COMIM_2021__29_2_a10
ER  - 
%0 Journal Article
%A Drensky, Vesselin
%T Weak polynomial identities and their applications
%J Communications in Mathematics
%D 2021
%P 291-324
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a10/
%G en
%F COMIM_2021__29_2_a10
Drensky, Vesselin. Weak polynomial identities and their applications. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 291-324. http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a10/